首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Introduction: Oral administration of most therapeutic peptides and proteins is mainly restricted due to the enzymatic and absorption membrane barrier of the GI tract. In order to overcome these barriers, various technologies have been explored. Among them, self-emulsifying drug delivery systems (SEDDS) received considerable attention as potential carriers to facilitate oral peptide and protein delivery in recent years.

Areas covered: This review article intends to summarize physiological barriers which limit the bioavailability of orally administrated peptide and protein drugs. Furthermore, the potential of SEDDS to protect incorporated peptides and proteins towards peptidases and proteases and to penetrate the mucus layer is reviewed. Their permeation-enhancing properties and their ability to release the drug in a controlled way are described. Moreover, this review covers the results of in vivo studies providing evidence for this promising approach.

Expert opinion: As SEDDS can: i) provide a protective effect towards a presystemic metabolism; ii) efficiently permeate the intestinal mucus gel layer in order to reach the absorption membrane; and iii) be produced in a very simple and cost-effective manner, they are a promising tool for oral peptide and protein drug delivery.  相似文献   

2.
Introduction: Amphiphilic block copolymers are recognized components of parenteral drug nanocarriers. However, their performance in oral administration has barely been evaluated to any great extent.

Areas covered: This review provides an overview of the methods used to prepare drug-loaded polymeric micelles and to evaluate their stability in gastrointestinal (GI) fluids, and then analyzes in detail recent in vitro and in vivo results about their performance in oral drug delivery. Oral administration of polymeric micelles has been tested for a variety of therapeutic purposes, namely, to increase apparent drug solubility in the GI fluids and facilitate absorption, to penetrate in pathological regions of the GI tract for locoregional treatment, to carry the drug directly toward the blood stream minimizing presystemic loses, and to target the drug after oral absorption to specific tissue or cells in the body.

Expert opinion: Each therapeutic purpose demands micelles with different performance regarding stability in the GI tract, ability to overcome physiological barriers and drug release patterns. Depending on the block copolymer composition and structure, a wealth of self-assembled micelles with different morphologies and stability can be prepared. Moreover, copolymer unimers can play a role in improving drug absorption through the GI mucosa, either by increasing membrane permeability to the drug and/or the carrier or by inhibiting drug efflux transporters or first-pass metabolism. Therefore, polymeric micelles can be pointed out as versatile vehicles to increase oral bioavailability of drugs that exhibit poor solubility or permeability and may even be an alternative to parenteral carriers when targeting is pursued.  相似文献   

3.
Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.  相似文献   

4.
Introduction: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted.

Areas covered: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins.

Expert opinion: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.  相似文献   

5.
Importance of the field: Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined.

Areas covered in this review: The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations.

What the reader will gain: This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery.

Take home message: A thorough understanding of biological barriers and the structure–activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy.  相似文献   

6.
Introduction: Pharmaceutical research and development is increasingly focussed on biopharmaceuticals including peptide and protein drugs. Despite their growing importance and almost 100 years of research, the vast majority are still only available by injection. Oral bioavailabilities of peptide and protein drugs are very low mainly because of the stability and permeability barriers of the gastrointestinal (GI) tract.

Areas covered: Data from studies of peptide/protein drug oral bioavailability, stability and permeability in the stomach, small intestine and large intestine have been compiled to make comparisons between the various regions of the GI tract and peptides/proteins with differing characteristics. Assessment of the oral formulation strategies that have progressed farthest in clinical trials has been conducted to identify which have the best potential for future success.

Expert opinion: Oral delivery of peptides and small proteins is increasingly achieved by utilising formulations that combat the stability challenges of the GI tract and disrupt the intestinal cell membranes to enable absorption. However, oral bioavailabilities remain low and variable therefore high, potentially toxic doses of peptide/protein drugs are needed to elicit a therapeutic effect leading to high cost of the final product. There is very little research into larger proteins, making their oral delivery unlikely in the near future.  相似文献   

7.
ABSTRACT

Introduction: Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy.

Areas covered: This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered.

Expert opinion: Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.  相似文献   

8.
ABSTRACT

Introduction: Systemically administered non-viral gene delivery systems face multiple biological barriers that decrease their efficiency. These systems are rapidly cleared from the circulation and sufficient concentrations do not accumulate in diseased tissues. A number of targeting strategies can be used to provide for sufficient accumulation in the desired tissues to achieve a therapeutic effect.

Areas covered: We discuss recent advances in the targeting of non-viral gene delivery systems to different tissues after systemic administration. We compare passive and active targeting applied for tumor delivery and propose some strategies that can be used to overcome the drawbacks of each case. We also discuss targeting the liver and lungs as two particularly important organs in gene therapy.

Expert opinion: There is currently no optimum non-viral gene delivery system for targeting genes to specific tissues. The dose delivered to tumor tissues using passive targeting is low and shows a high patient variation. Although active targeting can enhance binding to specific cells, only a few reports are available to support its value in vivo. The design of smart nanocarriers for promoting active targeting is urgently needed and targeting the endothelium is a promising strategy for gene delivery to tumors as well as other organs.  相似文献   

9.
Introduction: Various macromolecules including polypeptides, proteins, genes and polysaccharides have been drawing attention for their therapeutic potential. The passage through intestinal epithelium is the major barrier for the oral delivery of macromolecules, by either paracellular or transcellular pathways. However, most macromolecules are poorly absorbed in oral route due to their high molecular weight and low stability in the gastrointestinal (GI) tract. Nonetheless, advancing in oral macromolecular drug delivery will be significant in expanding the clinical use of therapeutic macromolecules.

Areas covered: Technologies using chemical conjugation, absorption enhancers and nano-/micro-particulate systems have been developed to improve oral bioavailability of macromolecules, and some of them are in the process of clinical trials. In this review, they are discussed in the context of their progression states, hurdles and modes of action.

Expert opinion: According to the better understanding of receptor or transporter structure and transport mechanisms in the GI tract, the progress ineffective oral delivery systems for therapeutic macromolecules is anticipated over the next decades. In addition, the advent of numerous particulate systems will also speed up the development of novel drug delivery technologies. This offers an optimistic perspective on the potential clinical usage of oral macromolecular drugs.  相似文献   

10.
《药学学报(英文版)》2021,11(8):2416-2448
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.  相似文献   

11.
Introduction: Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo.

Areas covered: In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed.

Expert opinion: During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.  相似文献   

12.
Introduction: Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications.

Areas covered: This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed.

Expert opinion: Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.  相似文献   

13.
Importance of the field: The mucosal delivery of vaccines provides the basis for induction of humoral, cellular and mucosal immune responses against infectious diseases. The delivery of antigens to and through mucosal barriers always remains challenging due to adverse physiological conditions (pH and enzymes) and biological barriers created by tight epithelial junctions restricting transportation of macromolecules. Mucoadhesive and biodegradable polymers offer numerous advantages in therapeutic delivery of proteins/antigens particularly through the mucosal route by protecting antigens from degradation, increasing concentration of antigen in the vicinity of mucosal tissue for better absorption, extending their residence time in the body and/or targeting them to sites of antigen uptake. Furthermore, antigen can be delivered more effectively to the antigen presenting cells by anchoring the ligand having affinity on the surface of carrier for the receptors present on the mucosal epithelial cells.

Areas covered in this review: The present review covers various polymeric carriers, which allow the possibility of modification and manipulation of their properties, thereby, enhancing the effectiveness of mucosal vaccines. This article reviews the recent literature and patents in the field of vaccine delivery using mucoadhesive polymeric carriers.

What the reader will gain: The reader will gain insights into various natural polymers, synthetic polymers and ligand derived polymeric carrier systems studied to enhance mucosal immunization.

Take home message: Biodegradable polymeric carriers represent a promising approach for mucosal delivery of vaccine.  相似文献   

14.
Introduction: Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery.

Areas covered: The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies.

Expert opinion: These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.  相似文献   

15.
Purpose. To investigate the effect of tyrphostin 8 (T-8), a GTPase inhibitor, on transferrin receptor (TfR)-mediated transcytosis of insulin-transferrin (In-Tf) conjugate in cultured enterocyte-like Caco-2 cells and on gastrointestinal (GI) absorption of In-Tf in streptozotocin (STZ)-induced diabetic rats. Methods. Caco-2 cells and diabetic rats were used as in vitro and in vivo models, respectively. TfR-mediated transcytosis was measured using 125I-In-Tf. The absorption of insulin in diabetic rats was demonstrated by the hypoglycemic effect. Rat blood glucose level was determined using a ONE TOUCH® blood glucose monitoring system. Results. T-8 increased apical-to-basolateral transport of In-Tf conjugate by enhancing TfR-mediated transcytosis in filter-grown Caco-2 cell monolayer, and this enhancement was higher and faster than the previously reported brefeldin A (BFA)-induced effect. The measurement of transepithelial electrical resistance (TEER) during the transport study showed that T-8 was less destructive on the cell tight junction than BFA. The GI absorption of In-Tf was evaluated by its hypoglycemic effect after oral administration in STZ-induced diabetic rats. The glucose-lowering effect of orally administered In-Tf in STZ-induced diabetic rats was improved by either T-8 or BFA. However, the effect of T-8 was more potent than that of BFA, especially at 7 h after administration. Either non-conjugated insulin or insulin-human serum albumin (In-HSA) conjugate by itself or in combination with T-8 did not show any hypoglycemic effect after oral administration, indicating that T-8-enhanced hypoglycemic activity of In-Tf was due to a selective enhancement of TfR-mediated transcytosis. Conclusions. Our data indicated that T-8 could be used to increase the GI absorption of insulin as a transferrin conjugate. T-8, as an enhancer of TfR-mediated transcytosis, is better than the previously reported BFA. T-8 produces a higher increase on the transport of In-Tf and a lower toxicity on epithelial cells. Our findings provide an alternative approach to promote the GI absorption of insulin, as well as other peptide or protein drugs.  相似文献   

16.
17.
The discovery of insulin in 1922 marked the beginning of research and development to improve the means of delivering protein therapeutics to patients. From that period forward, investigators have contemplated every possible route of delivery. Their research efforts have followed two basic pathways: one path has focused on non-invasive means of delivering proteins to the body; and the second path has been primarily aimed at increasing the biological half-life of the therapeutic molecules. Thus far, the commercial successes of protein delivery by the nasal, oral and pulmonary routes have been more opportunistic rather than the application of platform technologies applicable to every protein or peptide. In several limited cases, sustained delivery of peptides and proteins has employed the use of polymeric carriers. More successes have been achieved by chemical modification using amino acid substitutions, protein pegylation or glycosylation to improve the pharmacodynamic properties of certain macromolecules. Today, commercial successes for protein and peptide delivery systems remain limited. The needle and syringe remain the primary means of protein delivery. Major hurdles remain in order to overcome the combined natural barriers of drug permeability, drug stability, pharmacokinetics and pharmacodynamics of protein therapeutics.  相似文献   

18.
The discovery of insulin in 1922 marked the beginning of research and development to improve the means of delivering protein therapeutics to patients. From that period forward, investigators have contemplated every possible route of delivery. Their research efforts have followed two basic pathways: one path has focused on non-invasive means of delivering proteins to the body; and the second path has been primarily aimed at increasing the biological half-life of the therapeutic molecules. Thus far, the commercial successes of protein delivery by the nasal, oral and pulmonary routes have been more opportunistic rather than the application of platform technologies applicable to every protein or peptide. In several limited cases, sustained delivery of p-eptides and proteins has employed the use of polymeric carriers. More successes have been achieved by chemical modification using amino acid sub-stitutions, protein pegylation or glycosylation to improve the pharmacodynamic properties of certain macromolecules. Today, commercial successes for protein and peptide delivery systems remain limited. The needle and syringe remain the primary means of protein delivery. Major hurdles remain in order to overcome the combined natural barriers of drug permeability, drug sta-bility, pharmacokinetics and pharmacodynamics of protein therapeutics.  相似文献   

19.
ABSTRACT

Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects.

Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery.

Expert opinion: It has become apparent that a universal carrier that follows ‘one-size’ fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of ‘intelligent’ designs.  相似文献   

20.
Introduction: A critical factor for the efficacy of drugs is their availability at the site of interest. However, crossing endothelial and epithelial cell layers like the blood-brain barrier and the blood-intestinal barrier represents a major bottleneck for drug targeting. Coupling drugs to carriers that recognize endogenous receptors, which are then transported through cell layers by transcytosis, is a promising approach to overcome this bottleneck.

Areas covered: This review focuses on the intracellular pathways of receptor-mediated transcytosis and their applicability for transcellular drug delivery. It gives an overview about transcytotic trafficking routes in epithelia and highlights the well-studied examples of immungobulin transcytosis and transferrin transcytosis. The current knowledge about the less understood transcytosis pathways in endothelia is also summarized and low-density lipoprotein transcytosis is described. In addition, transcytosis pathways that are based on glycosphingolipids and lectins as their receptors are presented.

Expert opinion: Multiple transcellular drug delivery approaches based on proteinaceous receptors have been developed in recent years, whereas lectins that bind to glycosphingolipids emerge as promising alternative. Closer investigation of endogenous transcytosis mechanisms, especially in endothelia, will be a fruitful endeavor to devise more optimized carriers for transcytotic drug delivery.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号