首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Electrospun, an advanced technology, has been successfully employed for fibre production and offers many merits in novel drug delivery systems (DDSs). In recent years, electrospun has gained significant attention and attraction of the scientists in soaring numbers. This technology is superior to other technologies in fabricating the fibres which range from micrometers to manometers scale. The selection of appropriate polymers, electrospun processes and electrospun parameters play important roles in controlling the drug release while, treating serious illness. Besides, electrospraying process has similar characteristics to the electrospun and is presented briefly here. Further, in vivo and in vitro evaluations of the electrospun nanofibers are comprehensively discussed. In addition, the electrospun nanotechnology has been exploited to design drug release systems, investigate drug’s pharmacokinetics and further develop DDS. The electrospun nanofibers improve bioactivity of various types of drugs including water-insoluble, soluble, anticancer and antibacterial drugs and genetic materials. In the end, the prospects and challenges in the process of designing drug-loaded electrospun nanofibers are discussed in detail.  相似文献   

2.
ABSTRACT

Introduction: The unique structure of bone and cartilage makes the systemic delivery of free drugs to those connective tissues very challenging. Consequently, effective and targeted delivery for bone and cartilage is of utmost importance. Engineered biodegradable polymers enable designing carriers for a targeted and temporal controlled release of one or more drugs in concentrations within the therapeutic range. Also, tissue engineering strategies can allow drug delivery to advantageously promote the in situ tissue repair.

Areas covered: This review article highlights various drug delivery systems (DDS) based on biodegradable biomaterials to treat bone and/or cartilage diseases. We will review their applications in osteoporosis, inflammatory arthritis (namely osteoarthritis and rheumatoid arthritis), cancer and bone and cartilage tissue engineering.

Expert opinion: The increased knowledge about biomaterials science and of the pathophysiology of diseases, biomarkers, and targets as well as the development of innovative tools has led to the design of high value-added DDS. However, some challenges persist and are mainly related to an appropriate residence time and a controlled and sustained release over a prolonged period of time of the therapeutic agents. Additionally, the poor prediction value of some preclinical animal models hinders the translation of many formulations into the clinical practice.  相似文献   

3.
Importance of the field: Visceral leishmaniasis (VL) is the most overwhelming type of leishmaniasis associated with the poverty of developing countries and usually mortal if untreated. Most of the conventionally used dosage forms offer us the shortcomings of toxic side effects and emergence of drug resistance. Several efforts have been made to overcome the barriers involved in the treatment of VL. Colloidal carriers extensively represent the drug delivery systems (DDSs) for intracellular localization of antileishmanial compounds in macrophage-rich organs such as liver, spleen and bone marrow. These DDSs offer superior therapeutic efficacy over the conventional treatment in terms of site-specific drug delivery with reduced side effects. However, after 35 years of research in the field, AmBisome® (Amphotericin B liposome for injection, Astellas Pharma US, Inc.) is the only DDS used against the VL.

Areas covered in this review: A literature search was performed (for drugs and DDSs against VL) on PubMed and through Google.

What the reader will gain: This review aims to describe the pathophysiology of VL and its current conventional treatment with special reference to DDSs designed against VL.

Take home message: On reviewing the conventional drugs and DDSs developed against VL, it is concluded that advances in the field of targeted drug delivery can result in more efficient strategies for the therapy of VL.  相似文献   

4.
Various drug delivery systems (DDSs) are often used in modern medicine to achieve controlled and targeted drug release. Diffusional release of drugs from DDSs is often the main mechanism, especially at early times. Generally, average dimensions of DDS are used to model the drug release, but our recent work on drug release from fibers demonstrated that taking into account diameter distribution is essential. This work systematically investigated the effect of size distribution on diffusional drug release from DDSs of various geometric forms such as membranes, fibers, and spherical particles. The investigation clearly demonstrated that the size distribution has the largest effect on the drug release profiles from spherical particles compared to other geometric forms. Published experimental data for drug release from polymer microparticles and nanoparticles were fitted, and the diffusion coefficients were determined assuming reported radius distributions. Assuming the average radius when fitting the data leads to up to 5 times underestimation of the diffusion coefficient of drug in the polymer.  相似文献   

5.
Abstract

Currently, with the rapid development of nanotechnology, novel drug delivery systems (DDSs) have made rapid progress, in which nanocarriers play an important role in the tumour treatment. In view of the conventional chemotherapeutic drugs with many restrictions such as nonspecific systemic toxicity, short half-life and low concentration in the tumour sites, stimuli-responsive DDSs can deliver anti-tumour drugs targeting to the specific sites of tumours. Owing to precise stimuli response, stimuli-responsive DDSs can control drug release, so as to improve the curative effects, reduce the damage of normal tissues and organs, and decrease the side effects of traditional anticancer drugs. At present, according to the physicochemical properties and structures of nanomaterials, they can be divided into three categories: (1) endogenous stimuli-responsive materials, including pH, enzyme and redox responsive materials; (2) exogenous stimuli-responsive materials, such as temperature, light, ultrasound and magnetic field responsive materials; (3) multi-stimuli responsive materials. This review mainly focuses on the researches and developments of these novel stimuli-responsive DDSs based on above-mentioned nanomaterials and their clinical applications.  相似文献   

6.
Introduction: There is an enormous growth and awareness of the potential applications of natural polymers for colon delivery of therapeutic bioactives. Chitosan (CH), a cationic polysaccharide, has a number of vital applications in the field of colon delivery and has attracted a great deal of attention from formulation scientists, academicians and environmentalists due to its unique properties.

Areas covered: CH has been widely explored for the delivery of drugs, peptides, proteins and genes to the colon for different therapeutic applications. Sustained and controlled delivery can be achieved with CH-based formulations like CH-coated tablets, capsules, beads, gels, microparticles and nanoparticles. This review mainly focuses on various aspects of CH-based formulations, particularly development of colon-specific delivery of drug.

Expert opinion: The vital properties of CH make it a versatile excipient, not only for sustained/controlled release applications but also as biodegradable, biocompatible, bioadhesive polymer. The colon is recognized as the preferred absorption site for orally administered protein and peptide drugs. The main problem associated with CH is limited solubility at higher pH due to reduced cationic nature, which also reduces mucoadhesiveness. The application of newer targeting moiety with CH-based formulations for highly site-specific delivery of bioactive has to be evaluated for further improvement of therapeutic index (bioavailability).  相似文献   

7.
目的 通过调节纳米骨架载药系统(NDDS)中载体类型和比例实现对缬沙坦体外溶出和体内生物利用度的调控。方法 以缬沙坦作为模型药物,分别选取酸性敏感材料Eudragit E100(E100)、碱性敏感材料Eudragit L100-55(L100-55)作为载体材料,介孔二氧化硅Sylysia 350(S350)、Aerosil 200(A200)作为纳米骨架,通过调节载体和骨架材料的类型和比例筛选出具有pH 1.2、6.8敏感释放行为的纳米骨架载体处方,考察缬沙坦在pH 1.2、6.8环境中释放和在大鼠体内的药动学行为特征。结果 筛选的pH 1.2敏感释放缬沙坦NDDS处方缬沙坦、S350、E100比例为1∶3∶1,pH 6.8敏感释放缬沙坦NDDS处方为缬沙坦、A200、L100-55比例为1∶1∶3。pH 6.8敏感释放处方可调控缬沙坦在肠道pH 6.8条件下特异性溶出;pH 1.2敏感释放处方在保持缬沙坦在pH 6.8高溶出特性的同时可特异性地提高胃部酸性条件下的药物释放。pH 1.2、6.8敏感释放缬沙坦NDDS均一定程度上改善了缬沙坦的生物利用度,其中pH 6.8敏感释放缬沙坦NDDS提高生物利用度的幅度更高,血药浓度变化比较平缓。结论 NDDS可以调控缬沙坦的体外溶出和生物利用度,有望应用于pH值敏感性难溶药物的递送。  相似文献   

8.
Introduction: Ocular drug delivery is a very challenging endeavor due to the unique anatomical and physiological barriers. The low ocular bioavailability (<10%) obtained from conventional formulations has forced the scientists to develop new formulations to deliver drugs to ocular tissues at a controlled rate to reduce frequent instillations. The natural polymers have represented the potential to deliver drugs topically through the limited precorneal area and release over a prolonged time period.

Areas covered: The important points to be considered during the fabrication of ophthalmic formulations for example, properties of drug molecule and polymer which affect the release rate are discussed. Novel polymers, like arabinogalactan, xyloglucan, gum cordia, locust bean gum, carrageenan and Bletilla striata polysaccharide, besides the conventional polymers like chitosan, starch, sodium alginate, sodium hyaluronate, xanthan gum, gelatin, gellan gum, guar gum, collagen and albumin, have demonstrated the potential to safely deliver drugs at a controlled rate in different ophthalmic formulations.

Expert opinion: The limitations of topical delivery of genes and chemotherapeutic drugs can be overcome by using natural polymers with characteristic properties. Despite the wide applicability, tremendous efforts are required to establish natural polymers in novel formulations on a commercial scale.  相似文献   

9.
Introduction: Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications.

Areas covered: This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed.

Expert opinion: Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.  相似文献   

10.
Introduction: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels.

Areas covered: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration.

Expert opinion: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

11.
ABSTRACT

Introduction: Arterial hypertension is a disease of civilization that requires long-term treatment. Recently, growing interest in natural and synthetic polymers as drug delivery vehicles in controlled release dosage forms for improving the efficacy of treatment has been observed.

Areas covered: This review introduces biodegradable synthetic polyesters as macromolecular carriers of antihypertensive drugs. Although various, synthetic and natural polymer-drug conjugates and/or polymeric carriers of anticancer drugs are currently under preclinical and clinical studies, there is no such data for antihypertensive drugs. Therefore, it seems appropriate to use such materials for the treatment of hypertension.

Expert opinion: There are currently only a few studies describing the use of synthetic polyesters in the arterial hypertension therapy. In order to the fact that there is a high demand for new, effective antihypertensive dosage forms, further studies for such drug carriers are certainly expected. Synthetic polyester carriers could improve the drug bioavailability and its pharmacokinetic properties by altering the pharmaceutical dosage form. This property is particularly useful for drugs with proven pharmacological action, but with limited application due to their inappropriate pharmacological properties. The development of new polymeric materials and technologies affords the opportunity to produce novel synthetic polyester DDSs.  相似文献   

12.
Chemotherapy is one of the main ways to treat breast cancer clinically. However, the multidrug resistance to anti-tumor drugs limits their clinical use. To overcome these drawbacks, development of drug delivery systems (DDSs) has attracted more and more attention in cancer therapy. At present, the preparation and purification process are complicated for many reported DDSs, while clinic calls for new DDSs that are more convenient for preparation. Here, a new pH-responsive supramolecular organic framework drug delivery complex loading doxorubicin (DOX) is fabricated. Anti-tumor activity of the system in vitro was investigated by cell cytotoxicity, uptake assay, and cell apoptosis analysis. The anti-tumor activity in vivo was investigated by inspecting nude mice body weight, tumor volume, and weight, also a preliminary mechanism probe was conducted by HE and TUNEL staining. The DOX@SOF displayed high stability, good biocompatibility, and pH regulated drug release. At acid condition, the hydrazone bonds would be broken, which result in the dissociation of SOF, and then the drugs would be released from the system. Furthermore, DOX@SOF enhanced cellular internalization. Both in vitro and in vivo experiments reflected that DOX@SOF could enhance the anti-tumor activity of DOX for the MCF-7/ADR tumor cells and tumors. This study provides a highly efficient strategy to prepare stimulus-responsive supramolecular drug delivery complex for treatment of drug-resistant cancer, the results presented inspiring scientific interests in exploring new drug delivery strategy and reversing multi-drug resistance for clinical chemotherapy.  相似文献   

13.
Purpose. In the past decade, biodegradable polymers have becomethe materials of choice for a variety of biomaterials applications. Inparticular, poly(lactic-co-glycolic acid) (PLGA) microspheres havebeen extensively studied for controlled-release drug delivery. However,degradation of the polymer generates acidic monomers, andacidification of the inner polymer environment is a central issue in thedevelopment of these devices for drug delivery. Methods. To quantitatively determine the intrapolymer acidity, weentrapped pH-sensitive fluorescent dyes (conjugated to 10,000 Dadextrans) within the microspheres and imaged them with confocalfluorescence microscopy. The technique allows visualization of thespatial and temporal distribution of pH within the degradingmicrospheres (1). Results. Our experiments show the formation of a very acidicenvironment within the particles with the minimum pH as low as 1.5. Conclusions. The images show a pH gradient, with the most acidicenvironment at the center of the spheres and higher pH near the edges,which is characteristic of diffusion-controlled release of the acidicdegradation products.  相似文献   

14.
Introduction: The development and design of personalized nanomedicine for better health quality is receiving great attention. In order to deliver and release a therapeutic concentration at the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) which possess ideal properties of high drug loading, site-specificity and precise on-demand controlled drug delivery.

Areas covered: This review explores the potential of ME-NCs for on-demand and site-specific drug delivery and release for personalized therapeutics. The main features including effect of magnetism, improvement in drug loading, drug transport across blood?brain barriers and on-demand controlled release are also discussed. The future directions and possible impacts on upcoming nanomedicine are highlighted.

Expert opinion: Numerous reports suggest that there is an urgent need to explore novel NC formulations for safe and targeted drug delivery and release at specific disease sites. The challenges of formulation lie in the development of NCs that improve biocompatibility and surface modifications for optimum drug loading/preservation/transmigration and tailoring of electrical–magnetic properties for on-demand drug release. Thus, the development of novel NCs is anticipated to overcome the problems of targeted delivery of therapeutic agents with desired precision that may lead to better patient compliance.  相似文献   

15.
Purpose. The purpose of this study was to develop novel drug delivery systems with pH-sensitive swelling and drug release properties for localized antibiotic delivery in the stomach. Methods. The drug delivery systems were synthesized by crosslinking chitosan and poly(ethylene oxide) (PEO) in a blend to form semi-interpenetrating polymer network (semi-IPN). Scanning electron microscopy was used to compare the surface and bulk morphology of the freeze-dried and air-dried chitosan-PEO semi-IPN. The hydrogels were allowed to swell and release the antibiotics—amoxicillin and metronidazole—in enzyme-free simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.2) at 37°C. Results. Freeze-dried chitosan-PEO semi-IPN with a porous matrix had swollen extensively as compared to the air-dried hydrogel. The swelling ratio of freeze-dried and air-dried chitosan-PEO semi-IPN after 1 h in SGF was 16.1 and 2.30, respectively. More than 65% of the entrapped amoxicillin and 59% of metronidazole were released from the freeze-dried chitosan-PEO semi-IPN after 2 h in SGF. Conclusions. The results of this study suggest that freeze-dried chitosan-PEO semi-IPN could be useful for localized delivery of antibiotics in the acidic environment of the gastric fluid.  相似文献   

16.
Introduction: Biopolymers have been used extensively in the pharmaceutical field. Pectin, a biopolymer, has several unique properties that enable it to be used as an excipient or carrier for oral drug delivery systems. Accordingly, several investigators have identified the benefits of pectin-based delivery systems for oral drug administration.

Areas covered: This review first describes the chemical structure, source and production, degree of esterification and gel formation properties of pectin. The application of pectin in various oral drug delivery platforms is also discussed, that is, controlled release systems, gastro-retentive systems, colon-specific delivery systems and mucoadhesive delivery systems.

Expert opinion: Pectin from different sources provides different gelling abilities, due to variations in molecular size and chemical composition. Like other natural polymers, a major problem with pectin is inconsistency in reproducibility between samples, which may result in poor reproducibility in delivery characteristics. Scintigraphic studies and in vivo studies, in both animals and human volunteers, demonstrate the successful development of a pectin-based colon-specific drug delivery system. Pectin-based controlled release systems, gastro-retentive systems and mucoadhesive systems present promising approaches for increasing the bioavailability of drugs, but are in their infancy. A lack of direct correlation between in vitro release and in vivo absorption studies is a major concern with these systems.  相似文献   

17.
Introduction: Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure–function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release.

Areas covered: An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence–structure–function relationships, stimuli-responsive features and current and potential drug delivery applications.

Expert opinion: The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.  相似文献   

18.
Abstract

Redox-responsive nanogels (NGs) can encapsulate appropriate amount of active ingredient, deliver drugs to the target cells by the enhanced permeability and retention (EPR) effect or specific targeted groups, and finally, rapidly release the loaded drug at the site of action when the redox-stimulus is applied. These programmed site-specific drug delivery features cause unique drug delivery control in the stimuli-responsive NGs and lead to superior in vitro and/or in vivo anti-cancer efficacy. Because of the high difference between the concentration of oxidative species in normal and tumour tissues, which is very important for biomedical applications particularly cancer therapy, the redox-responsive NGs have received much attention among various stimuli-responsive NGs. Thus, in this review, we attempt to summarise recent efforts to prepare innovative redox-responsive NGs and discuss recent advances in the interface between drug delivery and stimuli-responsive NGs that are able to control drug biodistribution in response to specific stimuli, with a particular emphasis on their design, drug release performance and therapeutic benefits.  相似文献   

19.
ABSTRACT

Introduction: Polymers can be designed to modify their features as a function of the level and nature of the surrounding microorganisms. Such responsive polymers can endow drug delivery systems and drug-medical device combination products with improved performance against intracellular infections and biofilms.

Areas covered: Knowledge on microorganism growth environment outside and inside cells and formation of biofilm communities on biological and synthetic surfaces, together with advances in materials science and drug delivery are prompting strategies with improved efficacy and safety compared to traditional systemic administration of antimicrobial agents. This review deals with antimicrobial strategies that rely on: (i) polymers that disintegrate or undergo phase-transitions in response to changes in enzymes, pH and pO2 associated to microorganism growth; (ii) stimuli-responsive polymers that expose contact-killing groups when microorganisms try to adhere; and (iii) bioinspired polymers that recognize microorganisms for triggered (competitive/affinity-driven) drug release.

Expert opinion: Prophylaxis and treatment of infections may benefit from polymers that are responsive to the unique changes that microbial growth causes in the surrounding environment or that even recognize the microorganism itself or its quorum sensing signals. These polymers may offer novel tools for the design of macrophage-, bacteria- and/or biofilm-targeted nanocarriers as well as of medical devices with switchable antibiofouling properties.  相似文献   

20.
Introduction: Vagina, due to its anatomical position and physiological characteristics is increasingly being explored as a site for drug delivery in recent years. This route coupled with bioadhesion phenomena has born fruitful results in delivering drugs both locally as well as systemically.

Areas covered: Bioadhesive vaginal drug delivery system has been used for the treatment of local diseases affecting the vagina like candidiasis, STD, vaginal dryness, and so on. Also, research has demonstrated that drugs can be successfully delivered to systemic circulation via vaginal mucosa for treatment of various diseases like migraine and osteoporosis. Besides, this vaginal route has also been used for uterine targeting of drugs. This review focuses on these recent innovations that have been patented in the area of bioadhesive vaginal drug delivery systems. The review also highlights certain physicochemical characteristics of bioadhesive polymers that affect drug delivery through this route.

Expert opinion: An in-depth study of this review will give an insight into the potential areas that can be explored while designing a bioadhesive vaginal drug delivery system. Also, the in vitro and in vivo experimental results discussed in the review will help stimulate research in development and optimization of newer formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号