首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Present work describes a novel composition for encapsulating TRPsiRNA (TRPV1-targeting siRNA) within lipid-matrix (4:1::glyceryl behnate:stearic acid) of SLNs, using suitably modified cold high-pressure homogenisation technique. Optimisation of the method and composition conducted using calf-thymus DNA (ctDNA), to avoid cost of TRPsiRNA molecules, resulted in small size (d50?=?50–100?nm) and high entrapment (77.22–98.5%). Complete masking of extreme negative charge of both ctDNA (?34.50?mV) and TRPsiRNA (?23.98?mV) upon encapsulation in SLNs without employing cationic components is reported herein for the first time. Diffusion-controlled release (90.17% at 72?h) from a rigid matrix shifted to porous matrix (at 24?h) due to solubilisation of stearic acid at 37?°C. Efficient in vitro (HEK293 T cells) and in vivo transfection and expression established the proof-of-concept. PEG600 as supporting-surfactant and vitrifying agent promoted small size, effective transfection and rupture of endosomal membrane to affect endosomal escape. Physiological efficacy in terms of significant increase (p?相似文献   

3.
Chronic pain affects a high percentage of the general population. Traditional therapies based upon non-steroidal anti-inflammatory drugs (NSAIDs), opioids and co-analgesic therapies, such as antidepressant or anti-epileptic drugs, are often relatively ineffective in treating chronic pain. In addition, the low therapeutic indexes and, in particular, the often-intolerable side effect profiles of conventional compounds, limit their usefulness, especially in the elderly population. Despite intensive research, until recently there was little change in the classes of drugs available to treat chronic pain clinically. This was partly due to a failure to understand which physiological processes are important in mediating clinical chronic pain. Recently, however, greater understanding of the neurophysiology critical to chronic pain development has lead to the development of numerous alternative pharmacological strategies. This review article outlines the physiological processes occurring in chronic pain, highlights some of the approaches recently developed and mentions a number of drugs currently under development that aim to provide safer and more effective analgesia for chronic pain. These include COX-2 inhibitors, gabapentin, capsaicin, new opioid strategies, neurokinin-1 (NK-1) antagonists, cannabinoid receptor agonists, neuronal nitric oxide synthase (nNOS) inhibitors and NMDA receptor antagonists, as well as a number of other therapeutic strategies in development.  相似文献   

4.
2-Aminoethoxydiphenyl borate (2-APB) is widely used as a pharmacological tool for analysis of cellular Ca2+ regulation. In this study, we found that external acid potentiated neural cell death induced by 2-APB in rat pheochromocytoma 12 (PC12) cells. 2-APB induced cell death in half of the PC12 cells within 30 min at pH 6.6 but not at pH 7.4. The extent of the 2-APB-induced cell death increased in a dose-, time- and pH-dependent manner. Ca2+-imaging revealed that 2-APB increased [Ca2+]i in PC12 cells at pH 6.6. Removal of extracellular Ca2+ and chelation of intracellular Ca2+ inhibited the 2-APB-induced cell death. Antagonists of the store-operated Ca2+ (SOC) channel (SKF96365 and ruthenium red) blocked both 2-APB-induced cell death and Ca2+ influx, but those for transient receptor potential channels (BCTC, TRIM and BTP2), acid-sensing ion channels (amiloride) and proton-sensing G-protein-coupled receptors (U73122) did not. These results suggest that 2-APB induces neural cell death via Ca2+ overload through SOC channel activation under acidic pH.  相似文献   

5.
Prostaglandins are lipid mediators produced by cyclooxygenases from arachidonic acid, which serve pivotal functions in inflammation and pain. Inhibition of their production is the major analgesic mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs)-but also the source of most of their unwanted effects. While the development of selective inhibitors of inducible cyclooxygenase (COX)-2 (so called coxibs) has greatly reduced gastrointestinal side effects, the recent disappointment about a potential cardiovascular toxicity of COX-2-selective inhibitors has boosted interest in alternative targets. The discovery of several prostaglandin synthases and of distinct prostaglandin receptors has unraveled an unforeseen diversity within the prostanoid synthetic pathway. Behavioral and electrophysiological work in particular with genetically engineered mice meanwhile provides new clues to the role of different prostaglandins, prostaglandin synthases and prostaglandin receptors in pain pathways.  相似文献   

6.
7.
Although cannabinoids exhibit a broad variety of anticarcinogenic effects, their potential use in cancer therapy is limited by their psychoactive effects. Here we evaluated the impact of cannabidiol, a plant-derived non-psychoactive cannabinoid, on cancer cell invasion. Using Matrigel invasion assays we found a cannabidiol-driven impaired invasion of human cervical cancer (HeLa, C33A) and human lung cancer cells (A549) that was reversed by antagonists to both CB1 and CB2 receptors as well as to transient receptor potential vanilloid 1 (TRPV1). The decrease of invasion by cannabidiol appeared concomitantly with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Knockdown of cannabidiol-induced TIMP-1 expression by siRNA led to a reversal of the cannabidiol-elicited decrease in tumor cell invasiveness, implying a causal link between the TIMP-1-upregulating and anti-invasive action of cannabidiol. P38 and p42/44 mitogen-activated protein kinases were identified as upstream targets conferring TIMP-1 induction and subsequent decreased invasiveness. Additionally, in vivo studies in thymic-aplastic nude mice revealed a significant inhibition of A549 lung metastasis in cannabidiol-treated animals as compared to vehicle-treated controls. Altogether, these findings provide a novel mechanism underlying the anti-invasive action of cannabidiol and imply its use as a therapeutic option for the treatment of highly invasive cancers.  相似文献   

8.
Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently be lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ9-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), a hydrolysis-stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (MA) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids.  相似文献   

9.
10.
The constitutively active receptor (CAR) is a crucial regulator of genes encoding for enzymes active in drug/steroid oxidation, conjugation, and transport. In our attempt to isolate the endogenous inhibitory ligand(s) for the mouse CAR, we found surprisingly that the inhibitory activity was associated with di- and tri-isopropylated phenyl phosphates that were present in livers of untreated mice. Trans-activation experiments in mammalian cells with synthetic compounds verified that mouse CAR was inhibited by various isopropylated phenyl phosphates (40-80%). Such triaryl phosphates are widely used as fire retardants, lubricants, and plasticizers, and some of them are known to disturb reproduction by currently unknown mechanisms. Equipped with the finding that these compounds could interact with mouse CAR, we proceeded to determine their functional effects on other nuclear receptors. Human CAR and pregnane X receptor (PXR) were variably activated (2-5-fold) by triaryl phosphates while mouse PXR, peroxisome proliferator-activated receptor-alpha, and vitamin D receptor were refractory. Among steroid hormone receptors, the human androgen receptor was inhibited by triphenyl phosphate and di-ortho-isopropylated phenyl phosphate (40-50%) and activated by di- and tri-para-substituted phenyl phosphates (2-fold). Our results add to the list of CAR and PXR activators and suggest steroid-dependent biological pathways that may contribute to the reproductive effects of triaryl phosphates.  相似文献   

11.
UDP-glucose (UDPG), a glycosyl donor in the biosynthesis of carbohydrates, is an endogenous agonist of the G protein-coupled P2Y14 receptor. RBL-2H3 mast cells endogenously express a P2Y14 receptor at which UDPG mediates degranulation as indicated by β-hexosaminidase (HEX) release. Both UDPG and a more potent, selective 2-thio-modified UDPG analog, MRS2690 (diphosphoric acid 1-α-d-glucopyranosyl ester 2-[(2-thio)uridin-5″-yl] ester), caused a substantial calcium transient in RBL-2H3 cells, which was blocked by pertussis toxin, indicating the presence of the Gi-coupled P2Y14 receptor, supported also by quantitative detection of abundant mRNA. Expression of the closely related P2Y6 receptor was over 100 times lower than the P2Y14 receptor, and the P2Y6 agonist 3-phenacyl-UDP was inactive in RBL-2H3 cells. P2Y14 receptor agonists also induced [35S]GTPγS binding to RBL-2H3 cell membranes, and phosphorylation of ERK1/2, P38 and JNK. UDPG and MRS2690 concentration-dependently enhanced HEX release with EC50 values of 1150 ± 320 and 103 ± 18 nM, respectively. The enhancement was completely blocked by pertussis toxin and significantly diminished by P2Y14 receptor-specific siRNA. Thus, mast cells express an endogenous P2Y14 receptor, which mediates Gi-dependent degranulation and is therefore a potential novel therapeutic target for allergic conditions.  相似文献   

12.
Fatty acid amide hydrolase (FAAH) is the primary degradative enzyme of the endocannabinoid anandamide (N-arachidonoylethanolamine), which activates cannabinoid CB1 and CB2 receptors. FAAH disruption reduces nociception in a variety of acute rodent models of inflammatory pain. The present study investigated whether these actions extend to the chronic, collagen-induced arthritis (CIA) model. We investigated the anti-arthritic and anti-hyperalgesic effects of genetic deletion or pharmacological inhibition of FAAH in the CIA model. FAAH (−/−) mice, and FAAH-NS mice that express FAAH exclusively in nervous tissue, displayed decreased severity of CIA and associated hyperalgesia. These phenotypic anti-arthritic effects were prevented by repeated daily injections of the CB2 receptor antagonist, SR144528, but not the CB1 receptor antagonist rimonabant. Similarly, repeated administration of the FAAH inhibitor URB597 reduced CIA severity, and acute administration of rimonabant, but not SR144528, blocked the anti-hyperalgesic effects of prolonged FAAH inhibition, suggesting that prolonged CB2 receptor activation reduces the severity of CIA, whereas acute CB1 receptor activation reduces CIA-induced hyperalgesia. In contrast, acute administration of URB597 elicited a CB1 receptor-dependent anti-hyperalgesic effect. The observed anti-arthritic and anti-hyperalgesic properties of FAAH inhibition, coupled with a lack of apparent behavioral alterations, suggest that endocannabinoid modulating enzymes offer a promising therapeutic target for the development of novel pharmacological approaches to treat rheumatoid arthritis and associated hyperalgesia.  相似文献   

13.
Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.  相似文献   

14.
15.
16.
Evidence has been accumulating to indicate that the current classical model of dioxin's action based on the ligand-activated aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) dimer directly activating its target genes is not robust enough to explain many of the major toxic effects of this compound. In this review, efforts have been made to analyze the results of recent investigations in our laboratory in comparison to already existing evidence on the patterns of toxic actions of dioxin (=TCDD) from other laboratories from a specific viewpoint of elicitation of cellular inflammatory signaling by the ligand-activated AHR. The most salient features of the inflammatory action of TCDD are that its triggering events, such as the rapid increase in intracellular Ca2+ concentration, enzymatic activation of cytosolic phospholipase A2 (cPLA2) and that of Cox-2 are taking place through the nongenomic action of the ligand-activated AHR. This nongenomic pathway does not require ARNT. Therefore, this inflammation pathway is clearly discernable from the classical, genomic action pathway. The effect of such a nongenomic signaling persists for long time periods as shown by recent findings that artificial suppression of the early triggering events of this pathway, such as via suppression of cPLA2, Cox-2, or Src kinase indeed causes significant reduction of manifestations of hallmark toxicities of TCDD such as wasting syndrome and hydronephrosis. Together, the evidence strongly support the notion that the inflammatory action of the ligand-activated AHR that is mediated by the nongenomic pathway plays the major role in the inflammation inducing actions of dioxin-like chemicals.  相似文献   

17.
18.
An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca2+), either by directly facilitating Ca2+ influx through an ion channel, or through activation of G proteins that couple to intracellular Ca2+ stores or voltage-gated Ca2+ channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca2+ signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca2+ responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca2+.  相似文献   

19.
We previously reported that systemic administration of the endocannabinoid anandamide inhibited the head-twitches induced by the hallucinogenic drug 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice, which is mediated via the activation of 5-HT2A receptors. Endocannabinoid and glutamatergic systems have been suggested to modulate the function of 5-HT2A receptors. In the present study, we further investigated the role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. An anandamide transport inhibitor AM404 (0.3-3 mg/kg, i.p.), a fatty acid amide hydrolase inhibitor URB597 (0.1-10 mg/kg, i.p.), a glutamate release inhibitor riluzole (0.3 and 1 mg/kg, i.p.), a natural glutamate analog l-glutamylethylamide (theanine, 1 and 3 mg/kg, p.o.) and an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist NBQX (0.01-0.3 mg/kg, i.p.) significantly inhibited DOI-induced head-twitch response. The AMPA receptor positive modulator aniracetam (30 or 100 mg/kg, p.o.) reversed inhibition of head-twitch response by NBQX and URB597. These findings indicated that endocannabinoid and glutamatergic systems participate in the mechanism of action of DOI to induce head-twitch response.  相似文献   

20.
Antigen stimulation induces adenosine triphosphate (ATP) release from naïve lymphocytes in lymphoid tissues. However, previous studies indicated that the non-lytic release of ATP also occurs in most tissues and cell types under physiological conditions. Here, we show that extracellular ATP (eATP) is indeed constitutively produced by naïve T cells in response to lymphoid chemokines in uninflamed lymph nodes and is involved in the regulation of immune cell migration. In this review, we briefly summarize the homeostatic role of extracellular ATP in immune cell migration in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号