首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy.

Areas covered: A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized.

Expert opinion: Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of ‘two-compartment’ anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.  相似文献   

2.
Importance of the field: Gastric cancer is one of the most common causes of cancer death worldwide. P21-activated kinases (PAKs), regulators of cancer-cell signalling networks, play fundamental roles in a range of cellular processes through their binding partners or kinase substrates.

Areas covered in this review: The complex regulation of PAKs through their upstream or downstream effectors in human cancers, especially in gastric cancer, are described and the identified inhibitors of PAKs are summarized.

What the readers will gain: The structural differences and activation mechanisms between two subgroups of PAK are described. Both groups of PAKs play complicated and important roles in human gastric cancer, which indicated a possible way for us to identify the specific inhibitors targeting PAKs for gastric cancer.

Take home message: PAKs play important roles in progression of many cancer types, the full mechanisms of PAKs in gastric cancer are still unclear. It seems there are different roles for two groups of PAKs in cancers. Group I PAKs play their functions mostly through their specific substrates, however, many binding partners that are independent of phosphorylation by group II PAKs were identified. Finding specific inhibitors of PAKs will help us discover the roles of PAKs and target these kinases in human gastric cancer.  相似文献   

3.
Background: In many countries, ovarian cancer is the most lethal gynecological malignancy. Its poor prognosis is mainly due to the late stage of disease with metastasis at presentation. The significant failure rate of chemotherapy in patients with advanced stage disease is also a main concern. As such, developing novel therapeutic targets is essential to improve long-term survival. Overexpression of Tropomyosin-related kinase B (TrkB), a tyrosine kinase receptor, has been documented in ovarian cancer and is found to be correlated with poor prognosis. Objective/methods: We discuss the functional roles and the related downstream signaling pathways of TrkB and its ligand brain-derived neurotrophic factor (BDNF) in ovarian cancer. The possible crosstalk between TrkB/BDNF and other putative molecular targets in ovarian cancer is also discussed. Results/conclusions: All these latest findings shed light on the application of TrkB as a therapeutic target for ovarian cancer.  相似文献   

4.
Adrenomedullin (AM) is a 52 amino acid peptide that plays a critical role in several diseases such as hypertension, cancer, diabetes, cardiovascular and renal disorders, among others. Interestingly, AM behaves as a protective agent against some pathologies, yet is a stimulating factor for other disorders. Thus, AM can be considered as a new and promising target for the design of non-peptidic modulators that could be useful for the treatment of those pathologies, by regulating AM levels or the activity of AM. A full decade on from its discovery, much more is known about AM molecular biology and pharmacology, but this knowledge still needs to be applied to the development of clinically useful drugs.  相似文献   

5.
Colorectal cancer is one of the most common malignancies worldwide and 70% of tumors are resectable, but patients with metastatic diseases cannot be cured with current treatment modalities. Inhibition of the apoptotic pathway is one of the factors that may be responsible for carcinogenesis and drug resistance, and the inhibitor of apoptosis protein (IAP) family is thought to prevent apoptosis through inhibition of direct caspases and pro-caspases. Recently an increasing amount of evidence has been accumulated regarding cIAP2 and other IAP proteins of the antiapoptotic pathway and NF-κB signal transduction. IAPs are abnormally regulated and expressed in the majority of human malignancies at elevated levels. As a result, they have recently been reported to be therapeutic targets. The downregulation of cIAP2 efficiently enhances apoptosis through the activation of caspase 3/7 and 5-fluorouracil (5-FU) sensitivity in colorectal cancer cells exposed to 5-FU. This report reviews the evidence for cIAP2 and other IAP molecules as a therapeutic target for malignancies including colorectal cancer. So far, the information on colorectal cancer is limited; so this study includes other malignancies as well, in order to summarize the current knowledge of drug development targeting IAP molecules and provide an overview of the future course.  相似文献   

6.
7.
Introduction: Wingless-type (Wnt) signaling is tightly regulated at multiple cellular levels and is dysregulated in lung cancer. Therefore, it offers therapeutic targets for developing novel agents for lung cancer treatment.

Areas covered: In this article, we discuss the role of the Wnt signaling pathway in lung cancer, highlighting the aberrant activation of Wnt in lung cancer stem cells and its implication in resistance to radiotherapy, chemotherapy and targeted therapy. We also expound the regulatory roles of microRNAs in Wnt signaling, as well as the potential of the Wnt pathway to provide biomarkers and therapeutic targets in lung cancer. The potential use of small molecule and biological inhibitors targeting the Wnt pathway for lung cancer therapy and prevention is also discussed.

Expert opinion: Wnt signaling plays an important role in the development and metastasis of lung cancer; the pathway provides targets to develop agents towards for cancer prevention and therapy. A number of clinical trials have shown the effectiveness of Wnt pathway inhibitors in epithelial tumors. However, the side effects should be considered. Nevertheless, the results from clinical studies suggest that inhibitors targeting the Wnt signaling show promise against lung cancer.  相似文献   

8.
Because of its key role in tumor growth, angiogenesis has become an attractive target for pharmacological therapies. The angiogenic process is regulated by several ‘classic’ factors among which the most studied are VEGF and fibroblast growth factor-2 (FGF-2). These factors together with their receptors and other molecules involved in their signaling pathways are currently the main target of an extensive array of pharmacological strategies aimed at inhibit angiogenesis. In recent years, however, evidence has accumulated that in addition to the classic factors many other endogenous peptides play an important regulatory role in angiogenesis, especially under pathological conditions. Such a large network of signaling events might offer new possibilities of pharmacological intervention that could be complementary to existing antiangiogenic treatments. In particular, combination therapies could be devised to overcome or delay resistance and minimize side effects. In the last issue of Expert Opinion on Therapeutic Targets, in a paper by Deville et al., the authors focussed their attention on these important topics, and in this context offered a thoughtful analysis about the possible place of the peptide adrenomedullin as a new therapeutic target in future antiangiogenic strategies.  相似文献   

9.
10.
11.
Matter A 《Drug discovery today》2001,6(19):1005-1024
Angiogenesis - the formation of new blood vessels within a tumor (or many other tissue types) - has become a hotbed of pharmacological research as well as industrial drug discovery. This is the result of the efforts of a generation of scientists elucidating the complex (patho)physiological, biochemical and molecular events accompanying angiogenesis. It is estimated that >300 drug candidates are currently in various stages of testing, and it is, therefore, impossible to capture all of this in a brief review. Therefore, the emphasis here is on relatively advanced projects that are either in preclinical or clinical development, thus neglecting, to a large extent, the many exciting avenues being pursued in both academic and biotechnology laboratories. Although the potential of the approaches described cannot be overestimated, it is also important to note that there is still no drug on the market that achieves clinical benefit based on a selective modulation or inhibition of angiogenesis.  相似文献   

12.
Introduction: STXBP1 is an essential protein for presynaptic vesicle release. Mutations in STXBP1 have been associated with a series of (epileptic) neurodevelopmental disorders collectively referred to as STXBP1-encephalopathy (STXBP1-E). In this review we hypothesize about the potential of STXBP1 as a therapeutic target in the field of epileptic encephalopathies.

Areas covered: A state of the art overview on current understanding of the pathophysiologic mechanism underlying STXBP1-E is presented. Possibilities of different treatment modalities are discussed including unbiased compound screening, specific protein-protein interaction inhibition and gene therapy, consisting either of gene suppletion or upregulation of gene expression.

Expert opinion: Current treatment for STXBP1-E is largely limited to seizure control and future therapies will need to target the developmental aspects of the disease as well. Both in vitro- and animal models used to study the pathophysiology of STXBP1-E could be further optimized as a model for compound screening. They should reflect both the hyper excitable state and the psychomotor delay of STXBP1-E. Specific protein-protein interaction and gene therapy are promising future treatment options that need to be investigated further. We suggest a parallel research strategy on basic pathophysiology and compound development with both fields working in close collaboration with the patient/clinical community.  相似文献   


13.
Introduction: Pancreatic cancer (PC) is characterized by mucin overexpression. MUC4 is the most differentially overexpressed membrane-bound mucin that plays a functional role in disease progression and therapy resistance.

Area covered: We describe the clinicopathological significance of MUC4, summarize mechanisms contributing to its deregulated expression, review preclinical studies aimed at inhibiting MUC4, and discuss how MUC4 overexpression provides opportunities for developing targeted therapies. Finally, we discuss the challenges for developing MUC4-based therapeutics, and identify areas where efforts should be directed to effectively exploit MUC4 as a therapeutic target for PC.

Expert opinion: Studies demonstrating that abrogation of MUC4 expression reduces proliferation and metastasis of PC cells and enhances sensitivity to therapeutic agents affirm its utility as a therapeutic target. Emerging evidence also supports the suitability of MUC4 as a potential immunotherapy target. However, these studies have been limited to in vitro, ex vivo or in vivo approaches using xenograft tumors in immunodeficient murine models. For translational relevance, MUC4-targeted therapies should be evaluated in murine models with intact immune system and accurate tumor microenvironment. Additionally, future studies evaluating MUC4 as a target for immunotherapy must entail characterization of immune response in PC patients and investigate its association with immunosuppression and survival.  相似文献   


14.
接头蛋白或支架蛋白可以介导蛋白.蛋白之间的相互作用,并促进蛋白复合物的形成。Gab2作为中介分子,通过招募受体酪氨酸激酶等膜受体与其下游的效应蛋白如SHP2、P13K的p85亚基,PLCy、CRK、SHC和SHIP的结合来实现信号的传递。近年来,由于Gab2支架蛋白在信号转导过程中发挥着重要的作用,使得其在人类癌症特别是白血病、乳腺癌、卵巢癌及黑色素瘤中的角色备受关注。Gab2主要参与介导SHP2/RAS/ERK和P13K/AKT两条经典的信号通路。综述Gab2的结构与功能,调解的蛋白,在癌症中的作用以及其作为药物治疗靶点的潜力。  相似文献   

15.
During tumor progression, cancer cells undergo dramatic changes in the expression profile of adhesion molecules resulting in detachment from original tissue and acquisition of a highly motile and invasive phenotype. A hallmark of this change, also referred to as the epithelial–mesenchymal transition, is the loss of E- (epithelial) cadherin and the de novo expression of N- (neural) cadherin adhesion molecules. N-cadherin promotes tumor cell survival, migration and invasion, and a high level of its expression is often associated with poor prognosis. N-cadherin is also expressed in endothelial cells and plays an essential role in the maturation and stabilization of normal vessels and tumor-associated angiogenic vessels. Increasing experimental evidence suggests that N-cadherin is a potential therapeutic target in cancer. A peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing. In this review, the authors discuss the biochemical and functional features of N-cadherin, its potential role in cancer and angiogenesis, and summarize the preclinical and clinical results achieved with ADH-1.  相似文献   

16.
Introduction: Mitochondrial-derived peptides (MDPs) are encoded within the mitochondrial genome. They signal within the cell or are released to act as autocrine/paracrine/endocrine cytoprotective factors playing a key role in the cellular stress response. The first reported and better characterized MDP is humanin (HN), which exerts robust protective effects against a myriad of cytotoxic stimuli in many cell types. These effects have led to the evaluation of HN and its analogs as therapeutic targets for several chronic diseases.

Areas covered: We describe the latest findings on the mechanism of action of HN and discuss the role of HN as therapeutic target for neurodegenerative and cardiovascular diseases, diabetes, male infertility, and cancer. Since HN can be detected in circulation, we also depict its value as a biomarker for these diseases.

Expert opinion: HN analogs and peptide mimetics have been developed over the last decade and show promising results in preclinical models of degenerative diseases. Local administration of gene therapy vectors that overexpress or silence endogenous HN could also hold therapeutic potential. Controversy on the role of HN in cancer progression and chemoresistance should be addressed before the translation of these therapeutic approaches.  相似文献   


17.
Importance of the field: Solid tumors rely on efficient oxygen and nutrients transport for their growth, development and survival. Many tumors can stimulate new blood vessel formation. Because this angiogenic vasculature is aberrant from normal host vasculature, several strategies have been explored that specifically target tumor blood vessels.

Areas covered in this review: Over the past decade, many molecules that act on tumor vasculature have been identified. They can be divided into three groups based on their mechanism of action: i) antiangiogenic molecules cause tumor growth arrest; ii) vasoactive agents induce hyperabnormalization of the tumor vasculature, improving conventional drug accumulation in the tumor; iii) vascular disrupting agents that cause blood vessel congestion, resulting in massive secondary tumor cell necrosis. Many investigational drugs from these classes are currently being evaluated to assess their role in tumor therapy.

What the reader will gain: The underlying principle of each of the strategies is discussed, and the (pre)clinical results of the investigational drugs in this class are highlighted.

Take home message: To fully exploit the therapeutic potential of these drugs, it appears necessary to combine them with conventional anticancer agents, improve their selectivity for tumor vasculature, and develop biomarkers that predict the tumor sensitivity for these vascular strategies.  相似文献   

18.
Introduction: Cancer is a complex pathological disorder, established as a result of accumulation of genetic and epigenetic changes, which lead to adverse alterations in the cellular phenotype. Tumor progression involves intricate signaling mediated through crosstalk between various growth factors, cytokines and chemokines. Osteopontin (OPN), a chemokine-like protein, is involved in promotion of neoplastic cancer into higher grade malignancies by regulating various facets of tumor progression such as cell proliferation, angiogenesis and metastasis.

Areas covered: Tumors as well as stroma-derived OPN play key roles in various signaling pathways involved in tumor growth, angiogenesis and metastasis. OPN derived from tumor-activated macrophages modulates the tumor microenvironment and thereby regulate melanoma growth and angiogenesis. OPN also regulates hypoxia-inducible factor-1α-dependent VEGF expression leading to breast tumor growth and angiogenesis in response to hypoxia. Thus, a clear understanding of the molecular mechanism underlying OPN-mediated regulation will shed light on exciting avenues for further investigation of targeted therapies. Silencing of OPN using RNAi technology, blocking OPN activity using specific antibodies and small-molecule inhibitors might provide novel strategies, which would aid in developing effective therapeutics for the treatment of various types of cancer.

Expert opinion: This review focuses on new possibilities to exploit OPN as a tumor and stroma-derived therapeutic target to combat cancer.  相似文献   

19.
接头蛋白或支架蛋白可以介导蛋白-蛋白之间的相互作用,并促进蛋白复合物的形成。Gab2作为中介分子,通过招募受体酪氨酸激酶等膜受体与其下游的效应蛋白如SHP2、P13K的p85亚基,PLCγ、CRK、SHC和SHIP的结合来实现信号的传递。近年来,由于Gab2支架蛋白在信号转导过程中发挥着重要的作用,使得其在人类癌症特别是白血病、乳腺癌、卵巢癌及黑色素瘤中的角色备受关注。Gab2主要参与介导SHP2/RAS/ERK和PI3K/AKT两条经典的信号通路。综述Gab2的结构与功能,调解的蛋白,在癌症中的作用以及其作为药物治疗靶点的潜力。  相似文献   

20.
Introduction: The semaphorins were initially described as axon guidance molecules that play important roles in the development of nervous system. Recent studies suggest that semaphorins and their receptors also exert such diverse functions as immune response, control of vascular endothelial cell motility and invasion of many types of cancer cells.

Areas covered: The available results concerning application of class 3 semaphorins and their inhibitors for the treatment in animal disease models.

Expert opinion: Because semaphorins are now recognized as key players in immune, cardiovascular, bone metabolism and neurological system, semaphorins and their receptors are most promising therapeutic targets for various disease states. As semaphorins exert their diverse or even opposing activities in vivo, more elaborate studies on pathophysiology and signal transduction mechanisms of semaphorins are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号