共查询到20条相似文献,搜索用时 10 毫秒
1.
Introduction: In recent years, the applications of calcium carbonate (CaCO 3) nanoparticles (NPs) have gained extensive interest as targeted drug/gene delivery systems to cancerous tissues and cells due to their accessibility, low cost, safety, biocompatibility, pH-sensitivity, and slow biodegradability. Areas covered: Drug-loaded CaCO3 NPs (CCNPs) have been reviewed. An updated search on the current state of CCNPs as cancer drug/gene delivery systems with a focus on their special properties including pH-sensitivity, biodegradability, and sustained release performance has been also assessed. Expert opinion: Based on the reviewed literature, CCNPs, because of their superior features, will have a great aiding role in safe and efficient cancer treatment in the near future. 相似文献
2.
介绍了载药纳米粒在脑内药物传递系统中的应用 ,提出了其脑靶向性可能的影响因素和机制 相似文献
3.
由两亲性脂质分散在水性环境中自发形成各种几何形态构成的药物输送载体正成为制剂载药系统研究的热点之一。脂质立方液晶纳米粒是一定浓度的两亲性脂质分散在水溶液中自组装成含双连续水区和脂质区的闭合脂质双层“蜂窝状(海绵状)”结构,该独特的内部双水道结构和巨大膜表面积使其能够包封各种不同极性和剂量的药物,具有多样化的药物包裹性。作为药物载体,脂质立方液晶纳米粒还具有载药量大、保护多肽蛋白类药物和制备工艺简单等优点;可口服、局部黏膜和注射等多种途径给药,在多种剂型中有广泛的应用。本文对脂质立方液晶纳米给药系统的研究进行归纳和总结,并展望了脂质立方液晶纳米粒新型药物载体的应用前景。 相似文献
4.
癌症是威胁人类生存的恶性疾病之一。近年来,利用纳米技术将药物靶向递送到肿瘤部位,可以增加疗效并降低毒性,为癌症治疗带来了新希望。壳聚糖是自然界唯一存在的碱性多糖,具有良好的生物相容性和生物可降解性。此外,其反应位点多,可制成不同性质的衍生物,广泛用于药物递送系统和组织工程支架,在生物医药领域具有重要的应用价值。本综述对近年来壳聚糖纳米粒在抗癌药物递送方面的研究进展进行介绍,重点介绍了壳聚糖纳米粒的制备、被动靶向、主动靶向和刺激-响应药物递送系统方面的研究进展。 相似文献
5.
AbstractBased on exceptional advantages of aptamers, increasing attention has been presented in the utilise of them as targeted ligands for cancer drug delivery. Recently, the progress of aptamer-targeted nanoparticles has presented new therapeutic systems for several types of cancer with decreased toxicity and improved efficacy. We highlight some of the promising formulations of aptamer-conjugated polymeric nanoparticles for specific targeted drug delivery to cancer cells. This review paper focuses on the current progresses in the use of the novel strategies to aptamer-targeted drug delivery for chemotherapy. An extensive literature review was performed using internet database, mainly PubMed based on MeSH keywords. The searches included full-text publications written in English without any limitation in date. The abstracts, reviews, books as well as studies without obvious relating of aptamers as targeted ligands for cancer drug delivery were excluded from the study. The reviewed literature revealed that aptamers with ability to modify and conjugate to various molecules can be used as targeted cancer therapy agents. However, development of aptamers unique to each individual’s tumour to the development of personalised medicine seems to be needed. 相似文献
6.
多药耐药是导致肿瘤化疗失败的主要原因。对于大多数抗肿瘤药物,肿瘤细胞均会产生多药耐药现象, 但其耐药机制,目前没有统一的看法。本文对纳米粒给药系统逆转肿瘤多药耐药性进行了综述, 包括3种载药系统: 非修饰的、配体修饰的和多功能纳米粒给药系统,并对纳米粒给药系统逆转肿瘤多药耐药性的机制进行探讨。纳米粒通过拮抗和抵消肿瘤细胞主动外排药物的作用,提高肿瘤细胞内的药物浓度,同时减小对正常细胞的毒副作用, 逆转肿瘤的多药耐药性。这种新型的给药系统,结合了纳米技术及主动和被动靶向给药策略,在癌症治疗方面已显示出巨大的应用前景。
相似文献
7.
纳米粒作为抗肿瘤药物的载体,具有提高药物靶向性、稳定性、降低药物毒副作用等诸多优点。近年来,抗肿瘤药物纳米粒载体研究取得了较大进展,从其制备材料、包载药物及修饰方法3方面进行综述。 相似文献
8.
抗肿瘤药物的发展已进入新时期,纳米技术、新型靶向制剂的研究日趋成熟。本文通过检索大量相关文献,对纳米粒和靶向制剂在肝癌中的应用进行分析总结。 相似文献
9.
目的探究目前肿瘤靶向纳米递释系统存在的问题。方法在全面搜集查阅有关文献的基础上,对肿瘤靶向纳米递释系统研究现状进行归纳整理。结果从3个方面对肿瘤靶向纳米递释系统存在的问题以及新的发展趋势提出建议与对策。结论要在研究中取得突破,需要对人体生理学及肿瘤生物学进行深入研究,并在现有的给药策略和实验方法等方面进行调整。 相似文献
10.
The history and current status of fluorocarbon nanoparticles in biomedicine is briefly reviewed. The deficiencies of current fluorocarbon nanoparticle formulations are highlighted. Strategies to remedy such deficiencies and to functionalize fluorocarbon nanoparticles are presented. Potential applications of fluorocarbon nanoparticles as multifunctional drug delivery vehicles are discussed. The strength of fluorocarbon nanoparticles as drug delivery vehicles is that they integrate drug delivery with non-invasive MR imaging so that the biodistribution of the pharmaceutical entity (drug+delivery vehicle) can be monitored in real time. This, in turn, permits the physician to adjust treatment plan for each patient based on his/her actual response to the ongoing treatment. 相似文献
11.
Importance of the field: This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features. Areas covered in this review: The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery. What the reader will gain: The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications. Take home message: Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects. 相似文献
12.
目的综述白蛋白纳米粒作为药物传递系统的最新研究进展。方法依据国内外研究文章及专利文献共63篇,将白蛋白的性质及功能、白蛋白纳米粒的制备工艺、靶向肿瘤作用机理、上市药物及其临床前和临床实验结果进行了概括。结果白蛋白是一种良好的药物载体,显示独特的靶向肿瘤机理;白蛋白纳米粒的制备方法中二硫键形成法相对于其他制备方法具有显著优点,避免了很多基于溶剂传递的传统剂型中存在的潜在问题,由其制备的上市药物紫杉醇白蛋白纳米粒(Abraxane)具有较好的临床疗效。结论白蛋白纳米粒给药系统的研究有着重要的临床意义及发展前景。 相似文献
13.
Conventional chemotherapeutic approaches in cancer therapy such as surgery, chemotherapy, and radiotherapy have several disadvantages due to their nontargeted distributions in the whole body. On the other hand, nanoparticles (NPs) based therapies are remarkably progressing to solve several limitations of conventional drug delivery systems (DDSs) including nonspecific biodistribution and targeting, poor water solubility, weak bioavailability and biodegradability, low pharmacokinetic properties, and so forth. The enhanced permeability and retention effect escape from P-glycoprotein trap in cancer cells as a passive targeting mechanism, and active targeting strategies are also other most important advantages of NPs in cancer diagnosis and therapy. Folic acid (FA) is one of the biologic molecules which has been targeted overexpressed-folic acid receptor (FR) on the surface of cancer cells. Therefore, conjugation of FA to NPs most easily enhances the FR-mediated targeting delivery of therapeutic agents. Here, the recent works in FA which have been decorated NPs-based DDSs are discussed and cancer therapy potency of these NPs in clinical trials are presented. 相似文献
14.
目的介绍固体脂质纳米粒和纳米结构脂质载体在经皮给药系统中的应用与优势,为其开发利用提供参考。方法查阅国内外相关文献共30余篇,从固体脂质纳米粒和纳米结构脂质载体用于经皮给药系统的优势、药物在固体脂质纳米粒和纳米结构脂质载体中的分布形式及固体脂质纳米粒和纳米结构脂质载体在经皮给药领域中的应用等方面进行综述。结果固体脂质纳米粒和纳米结构脂质载体可以增强药物稳定性,能在皮肤表面产生包封效应,增加皮肤水合作用,具有药物靶向性。结论固体脂质纳米粒和纳米结构脂质载体是极有发展前景的新型经皮给药系统。 相似文献
15.
外泌体是来源于细胞内膜系统的囊泡样纳米结构,直径在40~100 nm之间,可由各种类型的细胞分泌释放。外泌体携带源于母细胞的分子物质,如蛋白质、mRNA、miRNA和脂类,参与机体的生理和病理过程。由于具有毒性低、无免疫原性和渗透性好等优势,外泌体作为新型的药物运载系统已成为众多研究者关注的焦点。本文基于外泌体特有的纳米结构和生理功能,就近年来外泌体载药系统研究的发展历程、载药优势及外泌体的工程化改造的现状和可能遇到的问题进行概述。 相似文献
16.
Nanomaterials have been demonstrated as useful tools for molecular imaging, molecular diagnosis and targeted therapy in biomedical research. The main advantages of such nanomaterials are improved circulation times, precise targeting, enhancement of dissolution rates and enhanced contrast. A challenge and opportunity for nanotechnological strategies is that multiple functionalities, such as therapeutics, targeting, imaging and stimuli responsiveness can be achieved within one nanoparticle. Multifunctional nanoparticles are now actively under investigation and are imminent as the next generation of nanoparticles for providing custom and tailored treatment. This review considers contemporary approaches and possible future directions in the emerging area of multifunctional nanoparticles with a special focus on targeted drug delivery. 相似文献
17.
Introduction: Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed. 相似文献
18.
AbstractNowadays, magnetic nanoparticles (MNPs) have been rapidly investigated and attracted worldwide attention due to their great potential as mediators of heat for treating hyperthermia and their possibility to deliver drugs at specific locations, which can thereby limit systematic effects. Cancer therapy via MNPs proposes novel properties rather than normal methods such as almost zero side effects and a high-efficiency rate of effectiveness. The key aim of targeted drug delivery is to reduce side effects of the main cancer treatment that other usual chemotherapies will attend to the body, and thus controlling the effectiveness of the drug on a specific location that tumoral tissue exist. Herein, the high potential of MNPs has been studied, and different examples of their effectiveness on drug delivery and hypothermia therapy have been provided. 相似文献
19.
The application of nanoparticles for the delivery and targeting of pharmaceutical, therapeutic and diagnostic agents in cancer therapy has received significant attention in recent years. Nanoparticles may be constructed from a wide range of materials and used to encapsulate or solubilize chemotherapeutic agents for improved delivery in vivo or to provide unique optical, magnetic and electrical properties for imaging and therapy. Several functional nanoparticles have already been demonstrated, including some clinically approved liposome drug formulations and metallic imaging agents. The next generation of nanoparticle-based research is directed at the consolidation of functions into strategically engineered multifunctional systems, which may ultimately facilitate the realization of individual therapy. These multiplexed nanoparticles may be capable of identifying malignant cells by means of molecular detection, visualizing their location in the body by providing enhanced contrast in medical imaging techniques, killing diseased cells with minimal side effects through selective drug targeting, and monitoring treatment in real time. This article highlights recent progress in the design and engineering of multifunctional systems, as well as discusses the development of a new, scalable and economic method for the modular preparation of multiplex nanoparticles where functional properties can be precisely and simply tailored. 相似文献
20.
自组装药物传递系统(SADDS)是基于药质体提出的新概念和新给药系统,融合了前药、分子自组装和纳米技术,是两亲前药形成的自组装纳米体系。其突出的特点是自组装体几乎没有辅料的参与,载药量大,稳定性好,在体内可获得靶向、控释效果,特别适合于抗病毒和抗肿瘤治疗。SADDS是学科交叉的产物,是药剂学研究的新方向。本文阐述了SADDS概念的来源、特点和研究进展,并展望了SADDS的研究前景。 相似文献
|