首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Epithelial-to-mesenchymal transition (EMT) is a pathological phenomenon of cancer that confers tumor cells with increased cell motility, invasive and metastatic abilities with the acquisition of ‘cancer stem-like cell’ (CSC) phenotype. EMT endows tumor cells with intrinsic/acquired resistant phenotype at achievable doses of anticancer drugs and leads to tumor recurrence and progression. Besides the complex network of signaling pathways, microRNAs (miRNAs) are being evolved as a new player in the induction and regulation of EMT.

Areas covered: In this review article, the author has searched the PubMed and Google Scholar electronic databases for original research and review articles to gather current information on the association of EMT-induced CSCs with therapeutic resistance, tumor growth and metastasis, which are believed to be regulated by certain miRNAs.

Expert opinion: This review outlines not only the perspective on selective targeting of EMT-induced CSCs through altered expression of novel miRNAs and/or the use of conventional drugs that affect the levels of critical miRNAs but also the strategies on overcoming the drug resistance by interfering with EMT and modulating its associated pathways in CSCs that can be considered as potential therapeutic approaches toward eradicating the tumor recurrence and metastasis.  相似文献   

2.
Importance of the field: Hepatocellular cancer (HCC) is the fifth most common malignancy worldwide and third leading cause of cancer death. HCC is highly resistant to conventional systemic therapies, and prognosis for advanced HCC patients remains poor. However, identification of signaling pathways responsible for HCC growth and progression such as RAS/RAF/MEK/ERK or PI3K/AKT/mTOR has determined crucial molecular targets and led to development of novel promising targeted therapies.

Areas covered in this review: This article presents molecular mechanisms responsible for development and progression of HCC and strategies aimed to block important molecules involved in signal transduction. It also reviews the clinical studies evaluating efficacy and safety of novel targeted approaches for treatment of this malignancy.

What the reader will gain: Inhibition of molecular targets (ligands, membrane receptors and receptor-associated kinases) represents a promising strategy for treatment of HCC; in the case of sorafenib, this has already been demonstrated to significantly improve survival of advanced HCC patients. This article reviews novel therapeutic approaches that are based on combinations of different targeted agents with or without classic cytotoxic drugs.

Take home message: Despite significant progress, advanced HCC remains an incurable disease, and the overall efficacy of recently approved targeted therapy (sorafenib) remains moderate. It is to be hoped that several ongoing clinical trials evaluating novel targeted approaches for treatment of HCC will lead to further improvement in the management of advanced disease.  相似文献   

3.
ABSTRACT

Introduction: Urinary bladder cancer (UBC) is the second most frequent malignancy of the urinary system and the ninth most common cancer worldwide, affecting individuals over the age of 65. Several investigations have embarked on advancing knowledge of the mechanisms underlying urothelial carcinogenesis, understanding the mechanisms of antineoplastic drugs resistance and discovering new antineoplastic drugs. In vitro and in vivo models are crucial for providing additional insights into the mechanisms of urothelial carcinogenesis. With these models, various molecular pathways involved in urothelial carcinogenesis have been discovered, allowing therapeutic manipulation.

Areas covered: This paper provides critical information on existing in vitro and in vivo models to screen the efficacy and toxicity of innovative UBC therapies and point out the challenges for new and improved models.

Expert opinion: In our opinion, results obtained with in vitro and in vivo models should be interpreted together, as a set of delicate biological tools that can be used at different stages in the drug discovery process, to address specific questions. With the development of new technologies, new assays and biomarkers are going to play an important role in the study of UBC. The molecular diagnostics and genomic revolution will not only help to develop new drug therapies, but also to achieve tailored therapies.  相似文献   

4.
Introduction: Urinary bladder cancer is a major human malignancy that afflicts millions of people worldwide every year. Urinary bladder cancer is usually superficial at presentation in 70 – 80% of patients. In these cases, a simple transurethral resection is adequate for removing the tumor. However, some patients experience recurrence or even tumor progression. In another 20 – 30% of patients, muscle-invasive carcinoma is diagnosed. Despite all the developments in this area, even today, the options for treatment of urinary bladder cancer remain inadequate. The search for the mechanisms involved in human urinary bladder cancer and for new and improved treatment methods has led to the development of many experimental models using laboratory animals over the past 40 years.

Areas covered: In this review, the authors provide a concise overview of the animal models used to study urinary bladder cancer. Furthermore, the authors discuss their advantages and disadvantages with regard to the search for new therapeutic approaches.

Expert opinion: The use of urinary bladder cancer models for understanding the mechanisms involved in tumors' response to new treatments is an important step in the drug discovery process. However, the authors believe that it will be necessary to develop our knowledge and understanding of the molecular processes underlying urothelial chemical carcinogenesis for us to better evaluate the efficacy of novel therapeutics.  相似文献   

5.
6.
Introduction: Phosphatases of regenerating livers (PRLs) are novel oncogenes that interact with many well-established cell signaling pathways that are misregulated in cancer, and are known to drive cancer metastasis when overexpressed.

Areas covered: This review covers basic information of the discovery and characteristics of the PRL family. We also report findings on the role of PRL in cancer, cell functions and cell signaling. Furthermore, PRL's suitability as a novel drug target is discussed along with current methods being developed to facilitate PRL inhibition.

Expert opinion: PRLs show great potential as novel drug targets for anticancer therapeutics. Studies indicate that PRL can perturb major cancer pathways such as Src/ERK1/2 and PTEN/PI3K/Akt. Upregulation of PRLs has also been shown to drive cancer metastasis. However, in order to fully realize its therapeutic potential, a deeper understanding of the function of PRL in normal tissue and in cancer must be obtained. Novel and integrated biochemical, chemical, biological, and genetic approaches will be needed to identify PRL substrate(s) and to provide proof-of-concept data on the druggability of the PRL phosphatases.  相似文献   

7.
Introduction: Tumor-associated angiogenesis is one of the essential hallmarks underlying cancer development and metastasis. Anti-angiogenic agents accordingly aim to restrain cancer progression by blocking the formation of new vessels, improving the delivery of chemotherapeutic agents to the tumor site and reducing the shedding of metastatic cells into the circulation. This review article addresses some key issues in the use of angiogenesis inhibitors in cancer.

Areas covered: The authors review the complex interactions between cell signaling pathways involved in tumor angiogenesis, and focus in particular on the molecular mechanisms that may induce resistance to angiogenesis inhibitors. They will also discuss some novel therapeutic strategies evolving within anti-angiogenic therapy such as the targeting of VEGFR-3, endothelial integrins and hepatocyte growth factor-MET signaling.

Expert opinion: Although anti-angiogenic therapy is targeted at the non-malignant part of the tumor, the intricate network of growth promoting signaling pathways and in particular the redundancy when single pathways are targeted in endothelial cells represents a major therapeutic obstacle. A key challenge will be to develop more efficient inhibitors, combined with an individualized approach based on each tumor's own endothelial signaling profile. Furthermore, reliable biomarkers which pinpoint those patients that will benefit from anti-angiogenic therapy need to be identified.  相似文献   

8.
Introduction: The treatment effects of advanced solid cancer are unsatisfactory, and novel therapeutic approaches are much needed. Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase that is primarily localized on epithelial cells. KGFR may play important roles in epithelial cell proliferation and differentiation, epithelial wound repair, embryonic development, immunity, tumor formation and development.

Areas covered: This review summarizes the expression, function and mechanism of KGFR in solid cancer, and analyzes its value for the cancer therapy. Furthermore, this study discusses the limitations of KGFR-based therapy, and envisages future developments in the clinical applications of KGFR.

Expert opinion: KGFR may function as an ideal therapeutic target for solid cancer. Continued basic investigation of KGFR-mediated pathways will push insight into the novel strategies of target therapy. More in vivo studies and clinical trials should be performed to promote the translational bridging of the latest research into clinical application.  相似文献   

9.
Introduction: 14-3-3ζ acts as a central hub in signaling networks, which promotes cell proliferation, adhesion and survival and inhibits apoptosis in multiple cancers. Development of inhibitors or agents that interfere with 14-3-3ζ-dependent signaling networks are likely to serve as novel molecular agents for targeted cancer therapy.

Areas covered: The role of 14-3-3ζ in cancer and its potential as a novel molecular target for therapy. The involvement of 14-3-3ζ in chemoresistance in multiple cancers provides a rationale for developing novel molecular therapies targeting this protein for more effective cancer management. The keywords used to conduct the literature search for this paper were ‘14-3-3/14-3-3zeta and cancer', ‘14-3-3 structure', ‘14-3-3 inhibitors', ‘14-3-3 cancer prognosis', ‘14-3-3 and cancer therapy', ‘role/ functions of 14-3-3'.

Expert opinion: 14-3-3ζ is a central cellular hub protein regulating multiple signaling pathways involved in cancer development, progression and therapeutic resistance. Thus, 14-3-3ζ may serve as a novel molecular target for cancer therapy. New approaches including synthetic and/or natural inhibitors that interfere with 14-3-3ζ–client interactions need to be developed for effective cancer therapy.  相似文献   

10.
Introduction: Protein tyrosine kinase inhibitors are currently one of the most important classes of cancer drugs and one of the most impressive approaches of targeted cancer therapy. Aberrant activation of tyrosine kinase pathways is among the most dysregulated molecular pathways in human cancers; therefore, a large number of tyrosine kinases may serve as valuable molecular targets. To date, several inhibitors of tyrosine kinases have been approved and there are hundreds more compounds that are in various stages of development. Because of the deregulation in human malignancies, the ABL1, SRC, the epidermal growth factor receptor and the vascular endothelial growth factor receptor kinases are among the protein kinases that are considered as prime molecular targets for selective inhibition.

Areas covered: This review focuses on most important small-molecule inhibitors that serve as a model for future development. They also provide a broad overview of some of the new approaches and challenges in the field.

Expert opinion: With the exception of a few malignancies seemingly driven by a limited number of genetic lesions, current targeted therapeutic approaches have shown only limited efficacy in advanced cancers. Consequently, more sophisticated strategies, such as identification of pathogenic ‘driver' mutations and optimization of personalized therapies are needed.  相似文献   

11.
ABSTRACT

Introduction: There is a growing body of evidence highlighting the applications of computational modeling in the field of biomedicine. It has recently been applied to the in silico analysis of cancer dynamics. In the era of precision medicine, this analysis may allow the discovery of new molecular targets useful for the design of novel therapies and for overcoming resistance to anticancer drugs. According to its molecular behavior, melanoma represents an interesting tumor model in which computational modeling can be applied. Melanoma is an aggressive tumor of the skin with a poor prognosis for patients with advanced disease as it is resistant to current therapeutic approaches.

Areas covered: This review discusses the basics of computational modeling in melanoma drug discovery and development. Discussion includes the in silico discovery of novel molecular drug targets, the optimization of immunotherapies and personalized medicine trials.

Expert opinion: Mathematical and computational models are gradually being used to help understand biomedical data produced by high-throughput analysis. The use of advanced computer models allowing the simulation of complex biological processes provides hypotheses and supports experimental design. The research in fighting aggressive cancers, such as melanoma, is making great strides. Computational models represent the key component to complement these efforts. Due to the combinatorial complexity of new drug discovery, a systematic approach based only on experimentation is not possible. Computational and mathematical models are necessary for bringing cancer drug discovery into the era of omics, big data and personalized medicine.  相似文献   

12.
Introduction: Endometrial cancer (EC) is the seventh most common malignancy in women. Most cases have a favorable prognosis because they present an early stage disease at diagnosis. Treatment currently comprises surgery with or without adjuvant approaches. A combination of radiation therapy, chemotherapy or hormonal therapy (HT) is usually administered. This article gives an update concerning the role of synthetic drugs in EC, reviewing the most recent data from Phase III randomized-controlled trials onwards.

Areas covered: Over the years, chemotherapy has become the treatment mainstay in both high-risk or locally advanced EC and in metastatic or recurrent disease. Carboplatin plus paclitaxel is currently considered the standard chemotherapy regimen with a well-tolerated toxicity profile. HT is an alternative option in women with advanced EC and important co-morbidities, and in young women with very early stage disease.

Expert opinion: Basic results of EC treatment during the last decade were collected. There is a need of more advances in treatment. The use of biomarkers, necessary for the success of a therapeutic strategy, and the identification of an ad-hoc population, are two important goals. In the authors' opinion, the development of comprehensive tumor bio-banks and international networks represent the right approach to foster translational studies and obtain improvement in patient outcomes.  相似文献   

13.
Introduction: The Ras proteins (K-Ras, N-Ras, and H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells.

Areas covered: The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: i) Ras itself, ii) Ras downstream pathways, and iii) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application.

Expert opinion: The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” on aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies.  相似文献   

14.
Introduction: Cancers exist within a complex microenvironment populated by diverse cell types within a protein-rich extracellular matrix. It is becoming increasingly apparent that molecular interactions between epithelial cells and cells in the surrounding stroma promote growth, invasion and spread of the tumor itself and thus represents a crucial underlying driving force in tumorigenesis.

Areas covered: This article reviews how key interactions between tumor epithelial cells and surrounding mesenchymal and immune cells can promote tumor progression and highlights molecular elements that might represent novel therapeutic targets.

Expert opinion: The tumor microenvironment is increasingly being viewed as a potential therapeutic target with a number of strategies being developed to disrupt tumor–stroma interactions, in order to delay or circumvent tumor progression. Targeting elements of the tumor microenvironment, or signaling pathways in tumor cells activated as a consequence of stromal interactions, may prove a useful therapeutic strategy to prevent tumor development and progression. However, given the tumor cells' ability to circumvent various therapeutic agents when given as monotherapy, the success of these agents is likely to be seen when used in combination with existing treatments.  相似文献   

15.
Introduction: Integrins, which are heterodimeric membrane glycoproteins, consist of a family of cell-surface receptors mediating cell–matrix and cell–cell adhesion. Analysis of tumor-associated integrins has revealed an important relationship between integrins and tumor development, bringing new insights into integrin-based cancer therapies. Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide and integrins appeal to be a novel group of potential therapeutic targets for HCC.

Areas covered: This review summarizes the current knowledge of integrins involved in HCC and the potential of integrin-targeted drugs in HCC therapy. A brief introduction on the structure, biological function and regulatory mechanism of integrins is given. The distinct expression patterns and biological functions of HCC-associated integrins are described. Finally, the current situation of integrin-based therapies in HCC and other tumor types are extensively discussed in the light of their implications in preclinical and clinical trials.

Expert opinion: To date, increasing numbers of integrin-targeted drugs are undergoing development and they exhibit diverse effects in cancer clinical trials. Tumor heterogeneity should be emphasized in developing effective integrin-targeted drugs specific for HCC. A better understanding of how integrins cooperatively function in HCC will assist in designing more successful integrin-targeted therapeutic drugs and corresponding approaches.  相似文献   

16.
17.
Introduction: Epithelial ovarian cancer is the most lethal gynecologic malignancy. Recent advances in understanding the biology and its molecular and histological diversity have led to mechanism based therapeutic strategies such as poly-ADP-ribose polymerase inhibitors (PARP) targeting homologous recombination deficient tumor cells and anti-angiogenic therapies. Clinical trial designs in ovarian cancer have to evolve to incorporate assessment of the genomic complexity and identify predictive biomarkers to improve precision of treatment and outcome.

Areas covered: This review summarizes present-day strategies used in the management of ovarian cancer and novel promising therapeutic approaches in development. The article is based on English peer-reviewed articles located on MEDLINE and related abstracts presented at major international meetings.

Expert opinion: Two types of molecular targeted therapies, anti-angiogenics and PARP inhibitors, have been shown to be active in randomized clinical trials and approved by regulatory agencies. Management of ovarian cancer is poised to change with the continued advancement of precision medicine that is founded upon improved understanding of disease biology; separation into histologically and molecularly defined subgroups; and the incorporation of this new knowledge into early phase drug development and novel clinical trial design.  相似文献   

18.
Importance of the field: The development of targeted anticancer therapies stems from advances in molecular biology. New agents range from antibodies that form complexes with antigens on the surface of the cancer cell to small molecules that have been engineered to block key enzymatic reactions. The interaction of the antibody or drug with its target inhibits key pathways involved in cell proliferation or metastasis, or activates pathways leading to cell death. Such pathways constitute ideal pharmacological targets. Clinical benefits from these novel therapeutic strategies are striking for patients with metastatic diseases.

Areas covered: This review analyses the main toxicities among most common targeted therapies that have been approved by the FDA or European Medicines Agency for their clinical utilisation in solid tumours treatment.

What the reader will gain: Here, the main toxicity and safety data among new anticancer targeted therapies are described. Data are organised through the pathways targeted by the drugs.

Take home message: The emergence of new targeted anticancer therapies promises more efficient and less toxic therapies. Generally, they are well tolerated, toxicities are commonly mild to moderate and can be handled rapidly. However, if most of these adverse events are manageable, life threatening and fatal complications can still occur.  相似文献   

19.
Importance of the field: The functional contribution of membrane-bound extracellular carbonic anhydrases (CAs) to hypoxic tumor growth and progression has long been hypothesized; however, recent convergent evidence from a number of groups strongly implicates these CAs as key prosurvival enzymes during tumor hypoxia. From this perspective targeting the inhibition of cancer-associated CA enzymes, most notably CA IX and XII, has recently been identified as a mechanistically novel scientific opportunity with great potential as a new cancer drug target.

Areas covered in this review: This review covers world patent applications filed during the 2007 – 2009 period for small molecule approaches; non-small molecule approaches are not within the scope of this review.

What the reader will gain: The reader will be provided with a background of the biology of CAs as well as the recent research findings that have validated the crucial prosurvival role of CAs in hypoxic tumors. The review will highlight small molecule molecular methods that modulate CAs as an anti-cancer therapeutic strategy.

Take home message: Much of what has been reported in the patent literature during the period 2007 – 2009 is based on alleged therapeutic benefits of CA inhibitors in cancer. Recently appropriate CA-relevant cell and animal models of tumor hypoxia for the evaluation of compounds have become available and the verification of the ability of small molecules to modulate CA activity as a cancer therapy or as a diagnostic and/or prognostic tool is now possible and probable. The CA field will thus provide for a scientifically exciting and possibly rewarding next few years, accelerated by the growing interest in the potential clinical applications of this enzyme class in oncology.  相似文献   

20.
Importance of the field: Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the role of these receptor tyrosine kinases (RTKs) in development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to cell survival, migration, invasion, metastasis and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer.

Areas covered in this review: Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, NSCLC, and breast cancer is examined. A discussion of Axl and/or Mer inhibitors in development is provided.

What the reader will gain: Potential toxicities associated with Axl or Mer inhibition are addressed. We propose that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a therapeutic opportunity to target both tumor cells and the stromal components that facilitate disease progression.

Take home message: Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号