首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The aim of this study was to obtain a stable, amorphous solid dispersion (SD) with Soluplus, prepared by hot-melt extrusion (HME) as an effective and stable oral delivery system to improve the physical stability and bioavailability of the poorly water-soluble simvastatin (SIM), a drug with relatively low Tg. The drug was proved to be miscible with Soluplus by calculation and measurements. The solubility, dissolution, thermal characteristics, interactions and physical stability of the SIM/Soluplus SDs were investigated. The crystal state of simvastatin in the SD was found to change from crystalline to amorphous form during the HME process and also hydrogen bonds were observed between SIM and the extruded Soluplus. The phase solubility showed the solubilization effect of Soluplus was strong and spontaneous. The equilibrium solubility illustrated that Soluplus/SIM SDs gained much higher solubility than its corresponding physical mixtures (PMs). Both of the dissolution profiles and in-vivo performance showed that the SIM/Soluplus SD obtained a marked enhancement, compared with the PM. There was a little change in the SIM/Soluplus SD during a 3-month storage period (40?°C, 75%), indicating the good physicochemical stability. The extruded Soluplus system prepared by HME is a good alternative for the water-insoluble SIM to improve the stability and bioavailability.  相似文献   

2.
目的用冷冻干燥技术制备甲苯磺酸拉帕替尼固体分散体,以提高其生物利用度。方法以PVPS630和soluplus^■为载体,采用冷冻干燥法制备甲苯磺酸拉帕替尼固体分散体,通过SEM、DSC、XRPD等手段对固体分散体进行表征,通过表观溶解度、溶出度和大鼠体内药动学测定,评价固体分散体的增溶效果和生物利用度的改善情况。结果在相同药载比的条件下,PVPS630组的溶出度和表观溶解度均优于soluplus^■组。DSC、XRPD、SEM等表征结果显示,PVPS630为载体的固体分散体中,原料均以非晶态存在,而以soluplus^■为载体时,只有药载比为1∶3条件下,原料才呈现非晶态特征。大鼠药动学测定结果表明,固体分散体(甲苯磺酸拉帕替尼-PVPS630为1∶3)较上市药品AUC提高23.64%。结论载体PVPS630与甲苯磺酸拉帕替尼的相容性更理想;固体分散技术有助于本品提高生物利用度。  相似文献   

3.
The aim of the present investigation was to enhance the solubility of exemestane (EXM), by solid dispersion (SD) technique using PEG 6000 as a carrier. Phase solubility studies were conducted with PEG 6000 and PEG 20000 to evaluate the effect of carriers on aqueous solubility of EXM. The aqueous solubility of EXM was favoured with PEG 6000 compared to PEG 20000. SDs of EXM using polyethylene glycol 6000 (PEG 6000) as carrier were prepared in different drug to carrier ratios. Solid-state characterization indicated decrease in crystallinity of the drug. The in vitro dissolution rate of EXM was enhanced from both SDs and tablet formulations prepared using SD compared to pure EXM. The in situ permeability studies investigated using single-pass intestinal perfusion technique in rats revealed increase in effective intestinal permeability (Peff, cm/s) by 4.45 folds with SDs. Thus, EXM-PEG 6000 SDs showed improved solubility and permeability.  相似文献   

4.
Context: Felodipine, a poorly soluble drug, is widely used in the treatment of angina pectoris and hypertension.

Objective: This study aimed at the preparation of amorphous solid dispersion (SD) of felodipine using an amphiphilic polymer, soluplus, for the potential enhancement in solubility of the drug.

Materials and methods: Solid dispersions with varying proportions of drug and soluplus were prepared and the rate and extent of dissolution from SDs was compared with that of the pure drug. FT-IR and 1H NMR spectroscopic analysis were carried out to examine the formation mechanism of SDs. Various techniques were used for solid state characterization of designed SDs.

Results: Formation of amorphous solid dispersions with particle size in nanometer range indicated suitability of polymer and method used in the preparation. FT-IR and 1H NMR spectroscopy revealed that soluplus was involved in strong hydrogen bonding with felodipine molecules which resulted in the conversion of crystalline felodipine into amorphous form. Solid dispersion with 1:10 drug/polymer ratio showed more than 90% drug dissolution in 30?min whereas pure felodipine showed less than 19% drug dissolution in 1?h.

Discussion and conclusion: Amorphous SDs of felodipine were prepared using soluplus resulting in substantial enhancement in the rate and extent of dissolution of felodipine.  相似文献   

5.
Introduction: In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems.

Areas covered: Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes–Whitney equation, while the wetting properties of the used polymer may also play an important role.

Expert opinion: The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.  相似文献   

6.
In current study, highly purified fenugreek gum (HPFG) isolated by patented method explored as emulsifier and hydrophilic solid carrier in drug delivery system. Anti-hyperlipidemic drug simvastatin (SIM) was selected as drug model for the study as it is associated with poorly water solubility and low bioavailability problems (<5 %). A suitable HPFG-based silica lipid system composed of SIM (1.5 %), medium chain triglyceride Capmul® MCM (10 %) as lipid phase, 0.6 % HPFG as emulsifier and HPFG 2.5 %, different grades colloidal silica (7.5 %) (Aerosil® 300 Pharma, Aerosil® 380 Pharma and Aeroperl® 300 Pharma) as hydrophilic solid carriers was developed. The optimized HPFG-based silica lipid systems were characterized for physical characteristics like flow ability, compressibility, redispersiblity, solubility and in vitro drug release using USP apparatus II in pH 6.8 phosphate buffer. The system was also characterized for Fourier transform infrared spectroscopy, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The developed formulation was found to have excellent flow property, readily redispersiblity, better aqueous solubility and showed 3–4-fold increase in dissolution rate as compared to plain drug and marketed formulation (Simlo® 10). Transition of crystalline drug to amorphous state was confirmed by DSC, PXRD and SEM studies. Enhanced dissolution rate and solubility possibly attributed to improved wetting, amorphous drug state and facilitated diffusion from lipid-based system. Thus developed HPFG-based silica lipid system provides an alternative means for SIM with enhanced dissolution rate and stability in oral solid dosage form.  相似文献   

7.
The aim of the research study was to investigate the ability of Soluplus® and surfactant individually as well as in combination to improve the solubility, subsequently the dissolution profile of lornoxicam (LORX). A laboratory size single screw rotating extruder with temperature and speed control parameters employed during hot melt extrusion (HME) processing of LORX along with polymer-surfactant blends. Soluplus® used as primary solubilizing agent for preparing solid dispersion (SD). Along with Soluplus® different concentrations of surfactants such as PEG 400, Lutrol F127, Lutrol F68 were used to solve the permeability issues related to LORX. Encapsulation of LORX particles inside the molten matrix of polymer-excipient blend was confirmed by DSC, XRD and FT-IR. Drug excipient microscopic interaction was further confirmed by scanning electron microscopy (SEM). Depending upon the ratio of the polymer and surfactants used, the solubility of the hot melt extruded LORX was improved and found to be in the range 35–86 μg/ml (actual aqueous solubility of LORX was found to be 0.0083 μg/ml). Dissolution profile of the extruded SD was improved and was found to be in the range of 98–104 % within 20 min (actual dissolution profile of LORX was found to be 8 % at the end of 1 h). SEM and Raman images suggest the formation of amorphous dispersion systems. SD was subjected to stability studies as per ICH guidelines and found to be stable after 6 months when analyzed by HPLC. SD prepared from HME significantly improves the solubility and dissolution profile of LORX—a BCS class II drug.  相似文献   

8.
The use of solid dispersions (SDs) is an established method for improving the dissolution rate of poorly water-soluble drugs. However, there have been few studies on the molecular mechanisms contributing to SD supersaturation. Emodin ternary SDs (TSDs) were prepared by hot melt extrusion (HME) using Kollidon® VA64 as the polymer carrier and nicotinamide as the bonding agent. Molecular docking and solubility tests were used to assist screening of polymer carriers, and in vitro dissolution and dissociation constant data were used to optimize the formulation. A variety of analytical methods and molecular dynamics simulations were used to investigate the mechanism of SD supersaturation at the molecular level. The results showed that molecular migration, intermolecular interactions, drug crystal transformation and dissociation constant were particularly important factors in SD supersaturation. This study proposes a new strategy to improve solubility of poorly water-soluble drugs and explore the molecular mechanisms of TSD supersaturation, which could provide a basis for the rational selection of excipients for pharmaceutical preparations.  相似文献   

9.
A promising approach to increase the aqueous solubility, hence the bioavailability, of poorly water-soluble drugs is to convert them into their amorphous state through impregnation into mesoporous silica. Unfortunately, mesoporous silica is not yet available in bulk quantities due to high manufacturing costs. In this work, feasibility of using a commercially available cost-effective mesoporous fine grade Neusilin® UFL2 to prepare amorphous drug composites of 2 model poorly soluble drugs, fenofibrate and itraconazole, is established. In contrast to fluidized-bed spray-impregnation, only mixing and drying steps are required. Complimentary assessment using X-ray powder diffraction, differential scanning calorimetry, and Raman spectroscopy confirmed drug within the composites to be amorphous at as high as 30% drug loading both after formation and after 3 months of storage at 40°C and 75% relative humidity. Amorphous drug recrystallization was completely suppressed due to the confinement effect due to the Neusilin®. The amorphous drug composites resulted in higher apparent solubility and faster dissolution rate of the model drugs as compared to their crystalline counterpart, confirmed by United States Pharmacopeia II dissolution and ultraviolet surface dissolution imaging. Overall, stable, high drug-loaded fast-dissolving amorphous drug composites preparation using Neusilin® UFL2 is demonstrated as a promising approach to enhance solubility of poorly soluble drugs.  相似文献   

10.
Cilostazol is practically insoluble in water and thus results in poor bioavailability. Only a few approaches have been reported for improving the bioavailability of cilostazol. Solid dispersion technique via solvent evaporation method was applied to improve the solubility and dissolution of cilostazol. Various polymers, mixture of polymer and surfactant, and mixture of polymers were screened as a carrier for the solid dispersion. Solubility of cilostazol was improved significantly when Eudragit® L100 was used as a carrier. However, addition of surfactant to Eudragit® L100 decreased the solubility slightly. Whereas, the mixture of Eudragit® L100 and Eudragit® S100 as a carrier system further increased the solubility. Based on the highest solubility obtained among the carriers screened, 1:1 ratio of Eudragit® L100 and Eudragit® S100 was selected as a carrier, and drug to carrier ratio was optimized to 1:5. Differential scanning calorimetry and X-ray diffraction studies showed that the characteristic peak of cilostazol disappeared in the solid dispersion, indicating that cilostazol existed in amorphous form in this formulation. Spray drying method was superior to vacuum drying method in terms of dissolution rate. Meanwhile, it was observed that the disintegration rate and the concentration of polymer had some effect on the crystallization of cilostazol in dissolution medium. Tablet formulation containing spray dried solid dispersion showed significant improvement in dissolution as compared to the commercial tablet.  相似文献   

11.
Tacrolimus has a poor solubility in water ranging from 4 to 12 μg mL?1. The mean bioavailability is ~21 %.The present study was carried out with a view to enhance the dissolution rate of poorly water-soluble drug tacrolimus using Gelucire 44/14® and Gelucire 50/13® as carriers and lactose monohydrate as an adsorbent. A combination of melt and adsorption techniques was employed for the preparation of solid dispersions (SD) to make final product easy for handling. Phase solubility study was conducted to evaluate the effect of carriers on aqueous solubility of tacrolimus. In order to elucidate the mechanism of dissolution enhancement, solid state characteristics were investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer–Peppas model and the drug release kinetics primarily as Fickian/anomalous diffusion. All prepared solid dispersions showed dissolution improvement compared to pure drug, with Gelucire 50/13® as the superior carrier over Gelucire 44/14®. Almost similar dissolution profile was obtained as a function of storage time; this can be explained by no change in XRD and DSC pattern after 45 days storage period.  相似文献   

12.
Purpose To obtain free flowing, stable, amorphous solid dispersions (SDs) of simvastatin (SIM), a drug with relatively lower glass transition temperature (Tg) by spray drying technique, and to perform comparative in vivo study in rats, which could justify the improvement in rate and extent of in vitro drug release.Methods Dichloromethane suspensions of SIM either alone or in combination with PVP (1:1 or 1:2 parts by weight) were spray dried with proposed quantity of Aerosil 200 (1:1, 1:1:1, 1:2:2 parts by weight of SIM, Aerosil 200 and PVP, respectively). SDs were characterized initially in comparison with pure drug and corresponding physical mixtures in same ratios by drug content, saturation solubility, SEM, DSC, XRPD, IR, and in vitro drug release. SD 1:2:2 was further subjected to accelerated stability testing and checked for in vitro drug release and presence of crystallinity using DSC and XRPD. In addition, improvement in rate and extent of in vitro drug release from SD 1:2:2 was justified by in vivo study in rats.Results Combination of SD and surface adsorption techniques has been attempted to overcome the limitations of spray drying technique for amorphization of low Tg drugs. Based on powder characteristics, drug content, saturation solubility, and feasibility of processing into tablets; SD 1:2:2 was selected as the optimized formulation. During initial characterization, SEM, DSC, and XRPD analyses confirmed the presence of amorphous form in SD 1:2:2. IR spectroscopy revealed possibility of hydrogen bonding interaction between SIM and PVP in SDs. Also, there was dramatical improvement in rate and extent of in vitro drug release of SD 1:2:2. Insignificant decrease in dissolution was observed with no evidence of crystallinity during accelerated stability studies of SD 1:2:2. Moreover in vivo study in rats also justified the improvement in therapeutic efficacy of SD 1:2:2 over pure SIM.Conclusions Thus, present study demonstrates high potential of spray drying technique for obtaining stable amorphous SDs of low Tg drugs.  相似文献   

13.
This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6?mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037?mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5–80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN’s release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55–57?°C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61–63?°C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic–hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs.  相似文献   

14.
In the present study, we aimed to probe the possibility of using mixed poloxamers as carriers to prepare ternary solid dispersion (SD) that facilitated solubility and dissolution rate of the poorly water soluble drug and compare with binary SD with single poloxamer. Lidocaine (LIC) was selected as a model drug, and poloxamer 188 (P188) and poloxamer 407 (P407) were utilized as single and mixed carriers. Depending on DSC and the dissolution testing, the appropriate ratio of SD prepared by melting method was optimized. Ternary and binary SD was characterized by DSC, XRD, SEM and FTIR. In vitro dissolution study, phase solubility study and saturated solubility study were performed to clarify solubilization from apparent phenomena and inherent reason. Moreover, stability study under different relative humidity (RH) was investigated. Physical characterizations of binary and ternary SD exhibited the formation of eutectic mixture and the presence of molecular interaction. Compared with the pure LIC, the dissolution rate and solubility of LIC in binary and ternary SDs were enhanced. The phase solubility study revealed an AL-type curve. Furthermore, the stability test indicated that ternary and binary SD was stable. The results of this study demonstrated that SD with mixed poloxamers could improve dissolution rate and solubility of poorly water-soluble drug.  相似文献   

15.
The objective of the study was enhancement of dissolution of poorly soluble carvedilol by solid dispersions (SDs) with Gelucire 50/13 using solvent evaporation method. The solubility of carvedilol showed linear increase with increasing concentrations of Gelucire indicating AL type solubility diagrams. SDs characterized for physicochemical characteristics using differential scanning calorimetry and X-ray diffractometry revealed transformation of crystalline form of drug to amorphous form which was confirmed by scanning electron micrographs. Further fourier transform infrared spectroscopy results suggested there is no drug carrier interaction. From the dissolution parameters such as mean dissolution time, dissolution efficiency and drug release rate, improved dissolution characteristics for SDs were observed compared with physical mixture and pure drug. Thus SDs of carvedilol in Gelucire 50/13 showed enhanced solubility and dissolution rate compared to pure drug.  相似文献   

16.
Various polyoxylglycerides have been researched extensively in the development of solid dispersions (SDs) for bioavailability enhancement of poorly water-soluble drugs. However, because of their low melting points (40°C-60°C), SDs produced are usually soft and semisolid. The objective of present study was to prepare SDs of a Biopharmaceutical Classification System class II drug, carvedilol, in mixtures of stearoyl polyoxylglycerides (Acconon® C-50; m.p. ~50°C) with polymers by hot melt extrusion to obtain free-flowing powder upon grinding. Miscibility of carvedilol with Kollidon® VA64, hydroxypropyl methylcellulose acetate succinate, and Klucel? EXF was first evaluated by film casting, and Kollidon® VA64 was selected for further study. SDs containing 5%-20% carvedilol, 0%-20% Acconon® C-50, and the remaining Kollidon® VA64 were prepared for hot melt extrusion. SDs were characterized by differential scanning calorimetry and powder X-ray diffraction analysis, and dissolution tests were conducted in 250 mL of pH 6.8 phosphate buffer by filling powders in capsules. Carvedilol was miscible with all polymers tested up to 50% and remained amorphous in SDs. The drug release from formulations containing 20% carvedilol and 0, 5%, 10%, and 20% Acconon® C-50 were 30%, 30%, 70%, and 90%, respectively, in 60 min. SDs containing carvedilol and Acconon® C-50, up to 20% each, as well as Kollidon® VA64, were physically stable after 3 months of storage at 25°C/60% relative humidity.  相似文献   

17.
Purpose. To investigate changes in drug dissolution on storage of ternary solid-dispersion granules containing poorly water-soluble drugs. Methods. Hot-melt granulation was used to prepare ternary solid-dispersion granules in which the drug was dispersed in a carrier and coated onto an adsorbent. Seven drugs including four carboxylic acid-containing drugs (BAY 12-9566, naproxen, ketoprofen, and indomethacin), a hydroxyl-containing drug (testosterone), an amide-containing drug (phenacetin), and a drug with no proton-donating group (progesterone) were studied. Gelucire 50/13 and polyethylene glycol (PEG) 8000 were used as dispersion carriers whereas Neusilin US2 (magnesium aluminosilicate) was used as the surface adsorbent. Results. Two competing mechanisms have been proposed to explain the complex changes observed in drug dissolution upon storage of solid dispersion granules. Conversion of the crystalline drug to the amorphous hydrogen bonded (to Neusilin) state seems to increase dissolution, whereas, the phenomenon of Ostwald ripening can be used to explain the decrease in drug dissolution upon storage. The solubility of the drug in Gelucire is a crucial factor in determining the predominant mechanism by governing the flux toward the surface of Neusilin. The mobility for this phenomenon was provided by the existence of the eutectic mixture in the molten liquid state during storage. Conclusions. A competitive balance between hydrogen bonding of the drugs with Neusilin and Ostwald ripening determines drug dissolution from solid-dispersion granules upon storage.  相似文献   

18.
The present study was carried out with a view to enhance dissolution rate of poorly water-soluble drug glipizide (GZ) (BCS class II) using polyethylene glycol (PEG) 6000, PEG 8000 and poloxamer (PXM) 188 as carriers. Solid dispersions (SDs) were prepared by melting method using different ratios of glipizide to carriers. Phase solubility study was conducted to evaluate the effect of carrier on aqueous solubility of glipizide. SD was optimized by drug content estimation and in vitro dissolution study and optimised SD was subjected to bulk characterization, Scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD). Preclinical study was performed in mice to study the decrease in blood glucose level from prepared SD compared with pure drug. Due to high solubility and drug release, PXM 188 in weight ratio of 1:2 was optimized. Decrease in blood glucose level in mice from SD was significantly higher (p < 0.05) compared to pure glipizide. Thus, solid dispersion technique can be successfully used for the improvement of the dissolution profile of GZ.  相似文献   

19.
The aim of this study was to compare the applicability of inulin, its surface-active derivative (Inutec? SP1), and polyvinylpyrrolidone (PVP) as carriers in high drug load solid dispersions (SDs) for improving the dissolution rate of a range of lipophilic drugs (diazepam, fenofibrate, ritonavir, and efavirenz). The SDs were prepared by spray freeze-drying. Scanning electron microscopy showed that the obtained samples were highly porous spherical particles. Modulated differential scanning calorimetry showed that the drugs incorporated in these carriers were fully or partially amorphous. The solubility of the drugs in solutions of the different carriers was increased in an order: inulin 2.3 kDa < PVP K30 ? Inutec? SP1. The dissolution behavior of SD tablets was evaluated. Inutec? SP1-based SD tablets showed the best performance followed by PVP- and inulin-based SD tablets. The superior dissolution behavior of the drugs from Inutec? SP1-based SDs could be ascribed to its surface-active nature. In addition, Inutec? SP1-based SD tablets gave good physical stability at 20 °C/45% relative humidity (RH) and 40 °C/75% RH for 3 months.  相似文献   

20.

Purpose

The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation.

Methods

Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes.

Results

The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25–40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution.

Conclusions

A method of highly solubilizing an extremely water-insoluble drug, ITZ, in aqueous media and converting it into an amorphous form in a physically stable SD was successfully investigated. The dissolution rate and the extent of supersaturation of the drug in dissolution media improved greatly, and any precipitate formed at high pH had very small particle size.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号