首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches.

Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed.

Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.  相似文献   

2.
Introduction: Enzymes are the macromolecular catalysts of many living processes and represent a sizable proportion of all druggable biological targets. Enzymology has been practiced just over a century during which much progress has been made in both the identification of new enzymes and the development of novel methodologies for enzyme kinetics.

Areas covered: This review aims to address several key practical aspects in enzyme kinetics in reference to translational drug discovery research. The authors first define what constitutes a high performance enzyme kinetic assay. The authors then review the best practices for turnover, activation and inhibition kinetics to derive critical parameters guiding drug discovery. Notably, the authors recommend global progress curve analysis of dose/time dependence employing an integrated Michaelis-Menten equation and global curve fitting of dose/dose dependence.

Expert opinion: The authors believe that in vivo enzyme and substrate abundance and their dynamics, binding modality, drug binding kinetics and enzyme’s position in metabolic networks should be assessed to gauge the translational impact on drug efficacy and safety. Integrating these factors in a systems biology and systems pharmacology model should facilitate translational drug discovery.  相似文献   

3.
Introduction: The ultimate objective of optimizing adsorption, distribution, metabolism and excretion (ADME) parameters in drug discovery is to maximize the unbound concentration at the site of action for a given dose level. This has the added benefit of minimizing the efficacious dose, reducing the potential for attrition related to drug burden and direct organ toxicity. The concept of drug efficiency was formulated as a tool to obtain a balanced profile between target affinity and ADME properties during lead optimization.

Areas covered: The authors discuss how it is possible to maximize the in vivo pharmacological potential addressing whether drug efficiency adds value to the decision-making process and whether it is possible to introduce a single optimization parameter, the drug efficiency index (DEI), linking target affinity and ADME properties, as a marker of in vivo efficacy.

Expert opinion: In the absence of a clear hypothesis-driven approach at the beginning of the program (i.e., pharmacokinetic–pharmacodynamic link), the objective to select molecules with a low therapeutic dose is still a major hurdle in drug discovery. The authors believe that a greater strategic focus on mechanistically relevant measures of the determinants of receptor occupancy would help the optimization and selection process. In this respect, the introduction of the DEI, which can be seen as a correction of target affinity by the in vivo pharmacokinetic potential, may help drug discovery to select and promote those molecules with the highest probability to interact with the biological target and with the best balance between target affinity and ADME properties.  相似文献   

4.
Introduction: Drug discovery is a challenging endeavor requiring the interplay of many different research areas. Gathering information on ligand binding thermodynamics may help considerably in reducing the risk within a high uncertainty scenario, allowing early rejection of flawed compounds and pushing forward optimal candidates. In particular, the free energy, the enthalpy, and the entropy of binding provide fundamental information on the intermolecular forces driving such interaction.

Areas covered: The authors review the current status and recent developments in the application of ligand binding thermodynamics in drug discovery. The thermodynamic binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead selection and optimization (binding enthalpy, selectivity, and adaptability).

Expert opinion: Binding thermodynamics provides fundamental information on the forces driving the formation of the drug-target complex. It has been widely accepted that binding thermodynamics may be used as a decision criterion along the ligand optimization process in drug discovery and development. In particular, the binding enthalpy may be used as a guide when selecting and optimizing compounds over a set of potential candidates. However, this has been recently called into question by arguing certain difficulties and in the light of certain experimental examples.  相似文献   

5.
Objectives: The objective of this study is to develop stable, biodegradable chitosan–sodium alginate-based dual, ionic cross-linked multiparticulate system (microbeads) of tinidazole for targeted colon delivery and sustained drug release for the treatment of amoebiasis and thereby evaluating its targeting approach through in vivo gamma scintigraphic imaging technique.

Methods: The chitosan–sodium alginate-based multiparticulate system developed was producing sustained effect by virtue of its mechanical strength using double ionotropic gelation method utilizing calcium chloride and sodium sulfate as first and second cross-linkers respectively. Prepared formulations were evaluated for percent yield, drug entrapment efficiency, particle size, degree of swelling, in vitro kinetics, and in vivo targeting potentials using gamma scintigraphic imaging technique.

Results: The obtained particulates were spherical, free flowing, and had a mean particle size ranging from 1.422 mm to 1.881 mm, whereas percent yield and percent drug entrapment efficiency was found to be in between 72.61 to 82.43% and 63.25 to 79.32% respectively.

Conclusion: The prepared multiparticulate system showed better sustained release property and in vivo ability to target colon for drug delivery. Hence, the developed multiparticulate system could be a promising device to achieve greater site-specificity to colon.  相似文献   

6.
Introduction: Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic (PK) contribution thereto, drug–target interactions that comprise successive ‘microscopic’ steps as well as the intervention of the cell membrane and other ‘micro’-anatomical structures nearby may help attaining this objective.

Areas covered: This article reviews the ‘micro’-pharmacodynamic (PD) and PK mechanisms that may increase a drug’s residence time. Special focus is on induced-fit- and bivalent ligand binding models as well as on the ability of the plasma membrane surrounding the target to act as a repository for the drug (e.g., microkinetic model), to actively participate in the binding process (e.g., exosite model) and, along with microanatomical elements like synapses and interstitial spaces, to act on the drug’s diffusion properties (reduction in dimensionality and drug-rebinding models).

Expert opinion: The PK profile, as well as the target dissociation kinetics of a drug, may fail to account for its long-lasting efficiency in intact tissues and in vivo. This lacuna could potentially be alleviated by incorporating some of the enumerated ‘microscopic’ mechanisms and, to unveil them, dedicated experiments on sufficiently physiologically relevant biological material like cell monolayers can already be implemented early on in the lead optimization process.  相似文献   

7.
目的:建立以胰脂肪酶和已上市药物为媒介的药-靶结合动力学模型,依据动力学参数与肠腔药动学构建靶点占有率模型,以评估药-靶结合动力学参数对体内药效的影响。方法:采用体外酶促反应体系测定胰脂肪酶抑制剂奥利司他和新利司他的半抑制浓度(IC50);通过反应进度曲线测定求解表观速率常数(kobs);采用快速稀释法测定药物-酶解离速率常数(koff);采用非线性拟合求解其他关键结合动力学参数;应用药物肠腔药代动力学模型,计算肠道中不同时间药物浓度;构建体内靶点占有率模型,并计算体内不同时间的靶点占有率。结果:测得奥利司他的IC50为19.1 nmol·L-1,新利司他的IC50为76 nmol·L-1;2个药物与胰脂肪酶呈时间、浓度依赖的缓慢结合反应,且结合反应属于两步结合模式,结合类型为机制B;可逆性研究结果显示奥利司他和新利司他为不可逆抑制;两药的结合速率常数(kon)分别为76.5×104和1.7×104M-1S-1,koff分别为0.33×10-6和8.4×10-6S-1。奥利司他对脂肪酶的靶点占有率在24 h大于90%,新利司他对脂肪酶的靶点占有率在21 h时大于60%。结论:本研究所建立的基于药-靶结合动力学胰脂肪酶靶点占有率模型可用于评估动力学参数对体内药效的影响。  相似文献   

8.
Introduction: In many situations, optimal drug therapy requires continuing high levels of target occupancy and this notion has led pharmacologists to focus their attention on the rate by which drug candidates dissociate from their target. To this end, radioligand dissociation experiments are often carried out on in vitro models, such as intact cells and the membranes thereof, but the interpretation of the collected data is sometimes ambiguous.

Areas covered: Pharmacodynamics is concerned about what the drug does to the target and, in this respect, allosteric modulation constitutes a quite novel, very promising research topic. The ability of unlabeled drugs to accelerate radioligand dissociation is often advocated to be a hallmark of such mechanism. Yet, the present computerized simulations reveal that competitive drugs produce the same effect by preventing hindered diffusion- and “forced proximity”-related rebinding of the radioligand. Herein, the authors provide hints to discern among those mechanisms.

Expert opinion: A critical, but constructive appraisal of radioligand dissociation binding data leads to the viewpoint that, from a physiological perspective, dissociation from confluent target-expressing plated cells, when in a naïve medium, is likely to provide the most pertinent insight in that ligand's in vivo residence time.  相似文献   

9.
Importance of the field: It is well established that the in vivo duration of drug action not only depends on macroscopic pharmacokinetic properties like its plasma half-life, but also on the residence time of the drug–target complexes. However, drug ‘rebinding’ (i.e., the consecutive binding of dissociated drug molecules to the original target and/or targets nearby) can be influential in vivo as well.

Areas covered in this review: Information about rebinding is available since the 1980s but it is dispersed in the life sciences literature. This review compiles this information. In this respect, neurochemists and biopohysicians advance the same equations to describe drug rebinding.

What the reader will gain: The rebinding mechanism is explained according to the prevailing viewpoint in different life science disciplines. There is a general consensus that high target densities, high association rates and local phenomena that hinder the diffusion of free drug molecules away from their target all promote rebinding.

Take home message: Simulations presented here for the first time suggest that rebinding may increase the duration and even the constancy of the drug's clinical action. Intact cell radioligand dissociation and related ex vivo experiments offer useful indications about a drug's aptitude to experience target rebinding.  相似文献   

10.
Introduction: The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies.

Areas covered: This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach.

Expert opinion: There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.  相似文献   

11.
The extent and duration of pharmacological action is determined by the lifetime of drug occupancy on a molecular target. This lifetime is defined by dynamic processes that control the rates of drug association and dissociation from the target. Recently, the term residence time has been coined to describe experimental measurements that can be related to the lifetime of the binary drug-target complex, and this in turn to durable, pharmacodynamic activity. The residence time concept and its impact on drug optimization are reviewed here. Examples are provided that demonstrate how a long residence time can improve drug efficacy in vivo. Additionally, optimization of drug-target residence time can help to mitigate off-target mediated toxicity, hence, improving drug safety and tolerability. Recent applications of the residence time concept to both drug discovery and development are also presented.  相似文献   

12.
Importance of the field: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is usually based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities.

Areas covered in this review: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last 2 decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described.

What the reader will gain: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery including in vivo screening of zebrafish genetic disease models.

Take home message: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease biology, but emphasizes the importance of the rigor of the disease model.  相似文献   

13.
  1. The present study aimed at investigating the theory that free (unbound) active site concentrations are the best predictors of target binding of compounds blocking the serotonin transporter (Sert) in the central nervous system (CNS).

  2. Thirteen serotonin reuptake inhibitors were evaluated for their Sert-binding affinities in vitro and in vivo in rats together with their unbound fractions in plasma and brain. Cortical Sert occupancy was used in vivo to acquire EC50-estimates from total plasma, free plasma, whole brain, and free brain concentrations after acute drug administration.

  3. The in vitroin vivo Sert occupancy analyses showed that the best correlation was achieved when unbound brain concentrations were employed. Unbound brain concentrations also provided a better correlation when compared with unbound plasma concentrations, which could be related to lack of equilibrium between plasma and brain at time of measurements or involvement of active brain efflux processes. In addition, brain-free fractions were shown to be directly correlated to the lipophilicity of the compounds.

  4. These data emphasize the use and impact of applying free fraction data in assessment of pharmacological in vitroin vivo correlations and demonstrates its use to validate in vivo Sert occupancy as pharmacodynamic marker for serotonin reuptake inhibitors in rats.

  相似文献   

14.
Introduction: Binding of drugs to human serum albumin (HSA) strongly influences their pharmacokinetic behavior and is associated with drug safety issues, low clearance, low brain penetration, as well as drug-drug interactions. Thus, in silico prediction of HSA binding contributes significantly to the discovery of new drug candidates.

Areas covered: The authors provide a short overview on the principles of HSA binding and the crystal structure of HSA, as well as discussing and analyzing the recent structure- and ligand-based HSA binding models. The authors also present the advantages and limitations of each methodology to construct efficient local or global models and outline the critical structural features contributing to HSA.

Expert opinion: The in silico estimation of drug binding to HSA in early drug discovery contributes to the lead optimization process. Local models are useful for the design of new compounds with reduced HSA binding for a particular target receptor, while real-time quantitative structure-activity relationships or global models combining structure- and ligand-based approaches serve for compound libraries screening. However, research efforts on other important plasma proteins should be strengthened in the perspective to enable predictions of total plasma protein binding for clinical candidates.  相似文献   

15.
ABSTRACT

Introduction: The Zika virus (ZIKV) infection results in severe neurological complications and has emerged as a threat to public health worldwide. No drugs or vaccines are available for use in the clinic and the need for novel and effective therapeutic agents is urgent.

Areas covered: This review describes the latest progress of antiviral development for the treatment of ZIKV infection; it primarily focuses on the literature describing 20 potential anti-ZIKV drugs/agents currently being tested in vivo or in clinical trials. The paper also discusses the need for novel ZIKV inhibitors and the critical issues for successful antiviral drug development.

Expert opinion: So far, 20 compounds have been tested in vivo and three in the clinical trials; progressing these compounds to the clinic is a challenge. Novel ZIKV inhibitors that target virus or host factors are urgently needed. Knowledge-driven drug repurposing, structure-based discovery, RNA interference, long noncoding RNAs, miRNAs, and peptide inhibitors may pave the way for the discovery of such novel agents.  相似文献   

16.
Abstract

1.?This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR).

2.?Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu?>?0.8) to extensive (fu?<?0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound).

3.?The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP.

4.?Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP.  相似文献   

17.
Introduction: Reaction phenotyping provides critical information regarding the fraction metabolized (fm) of drug candidates. It has become increasingly important in drug discovery and development as it can be used to assess victim drug-drug interaction potential, guide structural modification to reduce fm, inform clinical study design, predict individual variability in pharmacokinetics, and evaluate the impact of genetic polymorphisms.

Areas covered: The currently available in vitro and in vivo methods for reaction phenotyping are summarized along with their advantages, limitations and timings for application during the different stages of drug discovery and development. Challenges of reaction phenotyping for low clearance compounds, non-Cytochrome P450 (CYP) enzymes, extrahepatic contribution and atypical kinetics are highlighted and various approaches are discussed.

Expert opinion: Certain areas of reaction phenotyping remain challenging with the current state of the science. In order to better define fm in this challenging space, there needs to be future advances in selective inhibitors and specific substrate reactions for non-CYP enzymes, availability of high quality and low cost recombinant enzymes, tissue distribution and in vitro-in vivo correlation, scaling factors for extrahepatic enzymes and the next generation of low clearance tools.  相似文献   

18.
Introduction: Despite increased screening rates and advances in targeted therapy, colorectal cancer (CRC) remains the third leading cause of cancer-related mortality. CRC models that recapitulate key features of human disease are essential to the development of novel and effective therapeutics. Classic methods of modeling CRC such as human cell lines and xenograft mice, while useful for many applications, carry significant limitations. Recently developed in vitro and in vivo models overcome some of these deficiencies and thus can be utilized to better model CRC for mechanistic and translational research.

Areas covered: The authors review established models of in vitro cell culture and describe advances in organoid culture for studying normal and malignant intestine. They also discuss key features of classic xenograft models and describe other approaches for in vivo CRC research, including patient-derived xenograft, carcinogen-induced, orthotopic transplantation and transgenic mouse models. We also describe mouse models of metastatic CRC.

Expert opinion: No single model is optimal for drug discovery in CRC. Genetically engineered models overcome many limitations of xenograft models. Three-dimensional organoids can be efficiently derived from both normal and malignant tissue for large-scale in vitro and in vivo (transplantation) studies and are thus a significant advance in CRC drug discovery.  相似文献   

19.
20.
Objectives: The major objective is to target diethylcarbamazine citrate (DEC) to the lymphatics and to increase its retention time. The effect of various excipients on the physicochemical characteristics of the nanoparticles was also studied.

Materials and methods: Solid lipid nanoparticles (SLNs) of DEC were prepared by ultrasonication by varying the concentrations of compritol 888 ATO, poloxamer 188 and soya lecithin. The SLNs were evaluated for size, shape, texture, surface charge, physical nature of the entrapped drug, entrapment efficiency and in vitro drug release. In vivo animal studies were carried out to estimate the pharmacokinetic parameters in blood and drug concentration in lymph after oral administration.

Results: The size of the spherical particles was in the range of 27.25 ± 3.43 nm to 179 ± 3.08 nm and a maximum entrapment efficiency of 68.63 ± 1.53% was observed. In vitro release studies in pH 7.4 PBS displayed a rapid release and the maximum time taken for the complete drug to release was 150 min. In vivo studies indicated an enhancement in the amount of drug that reached lymphatics when administered via SLNs.

Conclusion: Targeting of DEC to the lymphatics is possible through SLNs and the retention time in the lymphatics can also be enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号