首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Importance of the field: Targeted liposomal drugs represent the next evolution of liposomal drug delivery in cancer treatment. In various preclinical cancer models, antibody-targeted PEGylated liposomal drugs have demonstrated superior therapeutic effects over their non-targeted counterparts. Single chain Fv (scFv) has gained popularity in recent years as the targeting agent of choice over traditional targeting agents such as monoclonal antibodies (mAb) and antibody fragments (e.g., Fab′).

Areas covered in this review: This review is focused mainly on advances in scFv-targeted liposomal drug delivery for the treatment of cancers, based on a survey of the recent literature, and on experiments done in a murine model of human B-lymphoma, using anti-CD19 targeted liposomes targeted with whole mAb, Fab′ fragments and scFv fragments.

What the reader will gain: This review examines the recent advances in PEGylated immunoliposomal drug delivery, focusing on scFv fragments as targeting agents, in comparison with Fab′ and mAb.

Take home message: For clinical development, scFv are potentially preferred targeting agents for PEGylated liposomes over mAb and Fab′, owing to factors such as decreased immunogenicity, and pharmacokinetics/biodistribution profiles that are similar to non-targeted PEGylated (Stealth®) liposomes.  相似文献   

2.
Introduction: Liposomes represent a versatile system for drug delivery in various pathologies. Platinum derivatives have been demonstrated to have therapeutic efficacy against several solid tumors. But their use is limited due to their side effects. Since liposomal formulations are known to reduce the toxicity of some conventional chemotherapeutic drugs, the encapsulation of platinum derivatives in these systems may be useful in reducing toxicity and maintaining an adequate therapeutic response.

Areas covered: This review describes the strategies applied to platinum derivatives in order to improve their therapeutic activity, while reducing the incidence of side effects. It also reviews the results found in the literature for the different platinum-drugs liposomal formulations and their current status.

Expert opinion: The design of liposomes to achieve effectiveness in antitumor treatment is a goal for platinum derivatives. Liposomes can change the pharmacokinetic parameters of these encapsulated drugs, reducing their side effects. However, few liposomal formulations have demonstrated a significant advantage in therapeutic terms. Lipoplatin, a cisplatin formulation in Phase III, combines a reduction in the toxicity associated with an antitumor activity similar to the free drug. Thermosensitive or targeted liposomes for tumor therapy are also included in this review. Few articles about this strategy applied to platinum drugs can be found in the literature.  相似文献   

3.
Introduction: Development of drug delivery systems for brain delivery is one of the most challenging research topics in pharmaceutical areas, mainly due to the presence of the blood–brain barrier (BBB), which separates the blood from the cerebral parenchyma thus limiting the brain uptake of the majority of therapeutic agents. Among the several carriers, which have been studied to overcome this problem, liposomes have gained increasing attention as promising strategies for brain-targeted drug delivery. The most advantageous features of liposomes are their ability to incorporate and deliver large amounts of drug and the possibility to decorate their surface with different ligands.

Areas covered: The purpose of this review is to explore the different approaches studied to transport and deliver therapeutics and imaging agents to the brain by using liposomes. In the first part of the review, particular attention is paid to describe the anatomy of the BBB and different physiological transport mechanisms available for drug permeation. In the second part, the different strategies for the delivery of a drug to the brain using liposomes are reviewed for each transport mechanism.

Expert opinion: Over the last decade, there have been significant developments concerning liposomal brain delivery systems conjugated with selected ligands with high specificity and low immunogenicity. An universally useful liposomal formulation for brain targeting does not exist but liposome design must be modulated by the appropriate choice of the specific homing device and transport mechanism.  相似文献   

4.
Importance of the field: This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features.

Areas covered in this review: The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery.

What the reader will gain: The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications.

Take home message: Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects.  相似文献   

5.
Introduction: Currently available chemotherapy is hampered by a lack in tumor specificity and resulting toxicity. Small and long-circulating liposomes can preferentially deliver chemotherapeutic drugs to tumors upon extravasation from tumor vasculature. Although clinically used liposomal formulations demonstrated significant reduction in toxicity, enhancement of therapeutic activity has not fully met expectations.

Areas covered: Low drug bioavailability from liposomal formulations and limited tumor accumulation remain major challenges to further improve therapeutic activity of liposomal chemotherapy. The aim of this review is to highlight strategies addressing these challenges. A first strategy uses hyperthermia and thermosensitive liposomes to improve tumor accumulation and trigger liposomal drug bioavailability. Image-guidance can aid online monitoring of heat and drug delivery and further personalize the treatment. A second strategy involves tumor-specific targeting to enhance drug delivery specificity and drug internalization. In addition, we review the potential of combinations of the two in one targeted thermosensitive-triggered drug delivery system.

Expert opinion: Heat-triggered drug delivery using thermosensitive liposomes as well as the use of tumor vasculature or tumor cell-targeted liposomes are both promising strategies to improve liposomal chemotherapy. Preclinical evidence has been encouraging and both strategies are currently undergoing clinical evaluation. A combination of both strategies rendering targeted thermosensitive liposomes (TTSL) may appear as a new and attractive approach promoting tumor drug delivery.  相似文献   

6.
Introduction: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens.

Areas covered: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands.

Expert opinion: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.  相似文献   

7.
Importance of the field: Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field.

Areas covered by this review: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC.

What the reader will gain: Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery.

Take home message: RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.  相似文献   

8.
Importance of the field: Drug combinations have been the standard of care in the treatment of cancer for > 50 years. Typically, combination chemotherapy uses agents with non-overlapping toxicities which are escalated to their maximum tolerated dose. However, emerging evidence indicates that this approach may not be providing optimal efficacy depending on the drug ratios to which the tumor is exposed. Combined drugs can be synergistic whereas other ratios of the same agents may be antagonistic or additive.

Areas covered in this review: In this review, we examine the importance of drug ratios in cancer therapy. We describe how manipulation of the lipid membrane and internal buffer composition maintains synergistic ratios of irinotecan and floxuridine (CPX-1), daunorubicin and cytarabine (CPX-351) or cisplatin and irinotecan (CPX-571). For polymer-based nanoparticles, prodrug hydrophobicity was exploited to coordinate the release of gemcitabine and the more hydrophobic paclitaxel. We present preclinical data for liposomal drug combinations which demonstrate that the most efficacious formulation is not always the highest dose of both agents.

What the reader will gain: An insight into the use of liposomes and polymer-based nanoparticles to deliver synergistic drug combinations to the tumor site and avoid antagonistic drug–drug interactions.

Take home message: The ability to control and maintain drug ratios in vivo through the use of nanoscale delivery vehicles results in a significant improvement in therapeutic activity.  相似文献   

9.
Introduction: Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of ‘free’ drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes.

Areas covered: The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed.

Expert opinion: The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.  相似文献   

10.
Abstract

Purpose: Androgenic alopecia (AGA) is a condition of progressive hair loss and involves follicular miniaturization triggered mainly due to varying levels of androgen besides environmental and genetic factors, which may also play some role. Minoxidil (MXD) has been considered as most effective therapeutic moiety to treat this disorder. Another drug Tretinoin (TRET) is known for its comedolytic activity and is reported to enhance percutaneous absorption of MXD. Presently both these drugs are being utilized for treatment of androgenic alopecia (AGA) in solution form which poses several problems in terms of poor solubility of drug, frequency of application and side effects.

Materials and methods: Current work investigates liposomal hydrogel system for simultaneous delivery of MXD and TRET to overcome the limitations of existing formulation. Successful development of liposomes was commenced by thin film hydration method and various parameters affecting desired characteristics like size, morphology, entrapment efficiency; stability and ex vivo permeation were optimized. The formulated liposomes were further characterized for various physicochemical properties and evaluated for in vivo irritancy study in animals.

Results and discussion: Results suggested prepared liposomes to be stable, homogenous and capable to hold both the drugs within. Association with hydrogel enhanced the permeation of MXD through skin ex vivo but TRET retained on the skin. Liposome loaded hydrogel was found to be non-irritant to skin.

Conclusion: Overall developed system showed potential for effective and simultaneous delivery of both the drugs.  相似文献   

11.
ABSTRACT

Introduction: Liposomes and lipid-based nanoparticles (LNPs) effectively deliver cargo molecules to specific tissues, cells, and cellular compartments. Patients benefit from these nanoparticle formulations by altered pharmacokinetic properties, higher efficacy, or reduced side effects. While liposomes are an established delivery option for small molecules, Onpattro® (Sanofi Genzyme, Cambridge, MA) is the first commercially available LNP formulation of a small interfering ribonucleic acid (siRNA).

Areas covered: This review article summarizes key features of liposomal formulations for small molecule drugs and LNP formulations for RNA therapeutics. We describe liposomal formulations that are commercially available or in late-stage clinical development and the most promising LNP formulations for ASOs, siRNAs, saRNA, and mRNA therapeutics.

Expert opinion: Similar to liposomes, LNPs for RNA therapeutics have matured but still possess a niche application status. RNA therapeutics, however, bear an immense hope for difficult to treat diseases and fuel the imagination for further applications of RNA drugs. LNPs face similar challenges as liposomes including limitations in biodistribution, the risk to provoke immune responses, and other toxicities. However, since properties of RNA molecules within the same group are very similar, the entire class of therapeutic molecules would benefit from improvements in a few key parameters of the delivery technology.  相似文献   

12.
Introduction: Although the skin provides a natural physical barrier against particle penetration, there are opportunities to deliver therapeutic agents through this barrier. With rapid developments in materials science, pharmaceutics, and biotechnology, new systems have emerged for topical glucocorticoids (TG) delivery. Despite being a mature class of drugs, TG are still the most frequently prescribed drugs by dermatologists, explaining the interest on this field.

Areas covered: Over the years, research has focused on strategies to optimize the potency of steroids while minimizing adverse effects. Several attempts have been made to increase the safety of TG treatment, including new application schedules, special vehicles, and new synthesized agents. This paper gives an overview on the conventional and advanced vehicles used to deliver TG, including strategies to improve the delivery and accumulation of TG. The therapeutic advantages of TG delivery to the epidermis are discussed with a special focus on new drug-delivery systems for topical application.

Expert opinion: New technologies have been developed for TG delivery, and studies are currently underway in order to obtain improved benefit/risk ratio. A rationale development approach that integrates simple formulations would help to develop vehicles with these features.  相似文献   

13.
Importance of the field: Neuroblastoma, a tumor of the sympathetic nervous system, is the most common extracranial solid tumor of early life. High risk disease in older children remains a therapeutic challenge, despite high-intensity therapy with correspondingly significant short- and long-term toxicities.

Areas covered in this review: We have reviewed therapy for neuroblastoma over the last three decades. This includes cytotoxic chemotherapy, immunotherapy, radionuclides, antiangiogenic compounds, and molecularly targeted agents. We provide a perspective on the incorporation of these drugs into therapy for neuroblastoma.

What the reader will gain: The reader will gain a better understanding of these novel agents and their targets in neuroblastoma. The reader will also gain insight into the need to define through sequential, carefully designed clinical trials, the roles and toxicities of these therapies, especially if the combination of targeted and conventional cytotoxic agents is used.

Take home message: Advanced-stage neuroblastoma in older infants and children remains a disease that is difficult to cure. New, targeted agents may improve both the therapeutic index and the outcome, but are, for the most part, in early development and present a challenge for clinical trial design given both the rarity of this disease and its responsiveness (albeit incomplete) to currently used cytotoxic agents.  相似文献   

14.
Importance of the field: Solid tumors rely on efficient oxygen and nutrients transport for their growth, development and survival. Many tumors can stimulate new blood vessel formation. Because this angiogenic vasculature is aberrant from normal host vasculature, several strategies have been explored that specifically target tumor blood vessels.

Areas covered in this review: Over the past decade, many molecules that act on tumor vasculature have been identified. They can be divided into three groups based on their mechanism of action: i) antiangiogenic molecules cause tumor growth arrest; ii) vasoactive agents induce hyperabnormalization of the tumor vasculature, improving conventional drug accumulation in the tumor; iii) vascular disrupting agents that cause blood vessel congestion, resulting in massive secondary tumor cell necrosis. Many investigational drugs from these classes are currently being evaluated to assess their role in tumor therapy.

What the reader will gain: The underlying principle of each of the strategies is discussed, and the (pre)clinical results of the investigational drugs in this class are highlighted.

Take home message: To fully exploit the therapeutic potential of these drugs, it appears necessary to combine them with conventional anticancer agents, improve their selectivity for tumor vasculature, and develop biomarkers that predict the tumor sensitivity for these vascular strategies.  相似文献   

15.
Introduction: Spinal cord disorders (SCDs) are among the most devastating neurological diseases, due to their acute and long-term health consequences, the reduced quality of life and the high economic impact on society. Here, drug administration is severely limited by the blood–spinal cord barrier (BSCB) that impedes to reach the cord from the bloodstream. So, developing a suitable delivery route is mandatory to increase medical chances.

Areas covered: This review provides an overview of drug delivery systems used to overcome the inaccessibility of the cord. On one side, intrathecal administration, either with catheters or with biomaterials, represents the main route to administer drugs to the spinal cord; on the other side, more recent strategies involve chemical or electromagnetic disruption of the barrier and synthesis of novel functionalized compounds as nanoparticles and liposomes able to cross BSCB.

Expert opinion: Both the multifactorial pathological progression and the restricted access of therapeutic drugs to the spine are probably the main reasons behind the absence of efficient therapeutic approaches for SCDs. Hence, very recent highlights suggest the use of original strategies to overcome the BSCB, and new multidrug delivery systems capable of local controlled release of therapeutic agents have been developed. These issues can be addressed by using nanoparticles technology and smart hydrogel drug delivery systems, providing an increased therapeutic compound delivery in the spinal cord environment and multiple administrations able to synergize treatment efficacy.  相似文献   

16.
Introduction: Combination therapy with multiple therapeutic agents has wide applicability in medical and surgical treatment, especially in the treatment of cancer. Thus, new drug delivery systems that can differentially release two or more drugs are desired. Utilizing new techniques to engineer the established drug delivery systems and synthesizing new materials and designing carriers with new structures are feasible ways to fabricate proper multi-agent delivery systems, which are critical to meet requirements in the clinic and improve therapeutic efficacy.

Areas covered: This paper aims to give an overview about the multi-agent delivery systems developed in the last decade for differential release in combination therapy. Multi-agent delivery systems from nanoscale to bulk scale, such as liposomes, micelles, polymer conjugates, nano/micorparticles and hydrogels, developed over the last 10 years, have been collected and summarized. The characteristics of different delivery systems are described and discussed, including the structure of drug carriers, drug-loading techniques, release behaviors and consequent evaluation in biological assays.

Expert opinion: The chemical structure of drug delivery systems is the key to controlling the release of therapeutic agents in combination therapy, and the differential release of multiple drugs could be realized by the successful design of a proper delivery system. Besides biological evaluation in vitro and in vivo, it is important to speed up practical application of the resulting delivery systems.  相似文献   

17.
Importance of the field: Diuretics are among the most important drugs of our therapeutic armamentarium and have been broadly used for >?50 years, providing important help towards the treatment of several diseases. Although all diuretics act primarily by impairing sodium reabsorption in the renal tubules, they differ in their mechanism and site of action and, therefore, in their specific pharmacological properties and clinical indications. Loop diuretics are mainly used for oedematous disorders (i.e., cardiac failure, nephrotic syndrome) and for blood pressure and volume control in renal disease; thiazides and related agents are among the most prescribed drugs for hypertension treatment; aldosterone-blockers are traditionally used for primary or secondary aldosteronism; and other diuretic classes have more specific indications.

Areas covered in this review: This article discusses the mechanisms of action, pharmacological effects and clinical indications of the various diuretic classes used in everyday clinical practice, with emphasis on recent knowledge suggesting beneficial effects of certain diuretics on clinical conditions distinct from the traditional indications of these drugs (i.e., heart protection for aldosterone blockers).

What the reader will gain: Reader will gain insights into the effective use of diuretic agents for various medical conditions, representing their established or emerging therapeutic indications.

Take home message: Knowledge of the pharmacologic properties and mechanisms of action of diuretic agents is a prerequisite for the successful choice and effective clinical use of these compounds.  相似文献   

18.
Introduction: Supramolecular hydrogels, formed by noncovalent crosslinking of polymeric chains in water, constitute an interesting class of materials that can be developed specifically for drug delivery and biomedical applications. The biocompatibility, stimuli responsiveness to various external factors, and powerful functionalization capacity of these polymeric networks make them attractive candidates for novel advanced dosage form design.

Areas covered: This review summarizes the significance of supramolecular hydrogels in various biomedical and drug delivery applications. The recent advancement of these hydrogels as potential advanced drug delivery systems (for gene, protein, anticancer and other drugs) is discussed. The importance of these hydrogels in biomedical applications, particularly in tissue engineering, biosensing, cell-culture research and wound treatment is briefly described.

Expert opinion: The use of supramolecular hydrogels in drug delivery is still in very early stages. However, the potential of such a system is undeniably important and very promising. A number of recent studies have been conducted, which mainly focus on the use of cyclodextrin-based host–guest complex as well as other supramolecular motifs to form supramolecular hydrogels for delivery of various classes of drugs, therapeutic agents, proteins and genes. However, there are still plenty of opportunities for further development in this area for drug delivery and other biomedical applications.  相似文献   

19.
Introduction: Nucleic acids have witnessed a dramatic acceleration in their therapeutic exploitation and currently represent a growing number of applications in drug development pipelines. However, a more wide-spread development of therapeutics based on nucleic acids is restricted by their poor chemical and enzymatic stability in vivo, lack of cellular uptake and insufficient capability to reach intracellular targets.

Areas covered: Advanced formulation of nucleic acids in nano-sized carriers may help unlocking their potential as therapeutic agents. Nano-sized matters own specific features responsible for inducing characteristic interactions with biological molecules and tissues. These properties enable for the enhancement of the nano-formulation’s therapeutic efficacy, but on the other hand, the nanomatters interactions in biological fluids are also responsible for adverse effects. The purpose of this review is to reflect on the complexity in the therapeutic delivery of RNA interference-based drugs emerging from the recent clinical experiences and report the actual technological and analytical advances introduced to solve it.

Expert opinion: The complexity in the therapeutic delivery of nucleic acids and the heterogeneity of side effects make the interpretation of the therapeutic outcome difficult. Hence the development of analytical approaches applicable in the field of nucleic acid delivery is becoming a major challenge.  相似文献   

20.
Importance of the field: The possibility of carbon nanotube integration into living systems for therapeutic and diagnostic purposes has opened the way to explore their applications in drug delivery and discovery. A wide variety of chemical approaches has been developed to functionalize carbon nanotubes with therapeutic molecules towards different biomedical uses.

Areas covered in this review: This review covers the recent advances in the development of functionalized carbon nanotubes to offer improvements for different diseases, in particular for cancer therapy.

What the reader will gain: Functionalized carbon nanotubes are able to transport therapeutic agents. Targeted methodologies using carbon nanotube-based conjugates have been investigated to improve the efficacy of some drugs. The capacity of such nanomaterials to seamlessly translocate into cells with alternative various mechanisms and their pharmacokinetic properties is also discussed.

Take home message: Although at its infancy, functionalized carbon nanotubes are very promising as a new nanomedicine platform in the field of drug discovery and delivery. They have the capacity to cross biological barriers and can be eliminated via renal and/or fecal excretion. They can transport small drug molecules while maintaining – and in some cases improving – their therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号