首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To investigate the effect of diazoxide administration on liver ischemia/reperfusion injury.METHODS: Wistar male rats underwent partial liver ischemia performed by clamping the pedicle from the medium and left anterior lateral segments for 1 h under mechanical ventilation. They were divided into 3 groups: Control Group, rats submitted to liver manipulation, Saline Group, rats received saline, and Diazoxide Group, rats received intravenous injection diazoxide (3.5 mg/kg) 15 min before liver reperfusion. 4 h and 24 h after reperfusion, blood was collected for determination of aspartate transaminase (AST), alanine transaminase (ALT), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), nitrite/nitrate, creatinine and tumor growth factor-β1 (TGF-β1). Liver tissues were assembled for mitochondrial oxidation and phosphorylation, malondialdehyde (MDA) content, and histologic analysis. Pulmonary vascular permeability and myeloperoxidase (MPO) were also determined.RESULTS: Four hours after reperfusion the diazoxide group presented with significant reduction of AST (2009 ± 257 U/L vs 3523 ± 424 U/L, P = 0.005); ALT (1794 ± 295 U/L vs 3316 ± 413 U/L, P = 0.005); TNF-α (17 ± 9 pg/mL vs 152 ± 43 pg/mL, P = 0.013; IL-6 (62 ± 18 pg/mL vs 281 ± 92 pg/mL); IL-10 (40 ± 9 pg/mL vs 78 ± 10 pg/mL P = 0.03), and nitrite/nitrate (3.8 ± 0.9 μmol/L vs 10.2 ± 2.4 μmol/L, P = 0.025) when compared to the saline group. A significant reduction in liver mitochondrial dysfunction was observed in the diazoxide group compared to the saline group (P < 0.05). No differences in liver MDA content, serum creatinine, pulmonary vascular permeability and MPO activity were observed between groups. Twenty four hours after reperfusion the diazoxide group showed a reduction of AST (495 ± 78 U/L vs 978 ± 192 U/L, P = 0.032); ALT (335 ± 59 U/L vs 742 ± 182 U/L, P = 0.048), and TGF-β1 (11 ± 1 ng/mL vs 17 ± 0.5 ng/mL, P = 0.004) serum levels when compared to the saline group. The control group did not present alterations when compared to the diazoxide and saline groups.CONCLUSION: Diazoxide maintains liver mitochondrial function, increases liver tolerance to ischemia/reperfusion injury, and reduces the systemic inflammatory response. These effects require further evaluation for using in a clinical setting.  相似文献   

2.
3.
4.
5.
AIM: To investigate the effect of mild steatotic liver on ischemia-reperfusion injury by focusing on Kupffer cells (KCs) and platelets. METHODS: Wistar rats were divided into a normal liver group (N group) and a mild steatotic liver group (S group) induced by feeding a choline-deficient diet for 2 wk. Both groups were subjected to 20 min of warm ischemia followed by 120 min of reperfusion. The number of labeled KCs and platelets in sinusoids and the blood perfusion in sinusoids were observed by intravital microscopy (IVM), which was performed at 30, 60 and 120 min after reperfusion. To evaluate serum alanine aminotransferase as a marker of liver deterioration, blood samples were taken at the same time as IVM.RESULTS: In the S group, the number of platelets adhering to KCs decreased significantly compared with the N group (120 after reperfusion; 2.9±1.1 cells/acinus vs 4.8±1.2 cells/acinus, P<0.01). The number of KCs in sinusoids was significantly less in the S group than in the N group throughout the observation periods (before ischemia, 19.6±3.3 cells/acinus vs 28.2±4.1 cells/acinus, P<0.01 and 120 min after reperfusion, 29.0±4.3 cells/acinus vs 40.2±3.3 cells/acinus, P<0.01). The blood perfusion of sinusoids 120 min after reperfusion was maintained in the S group more than in the N group. Furthermore, elevation of serum alanine aminotransferase was lower in the S group than in the N group 120 min after reperfusion (99.7±19.8 IU/L vs 166.3±61.1 IU/L, P=0.041), and histological impairment of hepatocyte structure was prevented in the S group. CONCLUSION: Ischemia-reperfusion injury in mild steatotic liver was attenuated compared with normal liver due to the decreased number of KCs and the reduction of the KC-platelet interaction.  相似文献   

6.
Abstract: Deterioration of energy metabolism and oxidative stress represent fundamental mechanisms in ischemia and reperfusion injury. In a normothermic ischemia/reperfusion rat model, we investigated whether allopurinol (ALL) may improve the scavenging ability of the liver after ischemia. ALL was given prior to ischemia and reperfusion (concentration 100 or 50 mg/kg) and controls were given a placebo. After a basal period of 30 min, 1 h normothermic ischemia was induced in the median and left liver lobes followed by 24 h observation. The overall liver function was assessed by bile secretion, and free oxygen production was assessed by glutathione efflux into bile during the first 60 min of reperfusion and at 24 h. Allopurinol (concentration 100 mg/kg) protected hepatocyte function as bile flow improved significantly in this group after 1 and 24 h of reperfusion compared with that of controls. Oxidative stress was also significantly attenuated in this group, as efflux of glutathione into bile was significantly higher in the ALL group (100 mg/kg) after 24 h but not after 1 h of reperfusion compared with that of controls. ALL given in a concentration 50 mg/kg had some, but a non-significant, effect. We conclude that biliary glutathione is an important marker of oxidative stress and may reflect the scavenging ability of the liver after ischemic injury. Significant correlation of bile flow with biliary glutathione during reperfusion indicates that oxidative stress is an important mechanism attenuating liver function after ischemia/reperfusion injury.  相似文献   

7.
AIM: To evaluate preventative effects of ischemic preconditioning(IP) in a rat model of intestinal injury induced by ischemia-reperfusion(IR).METHODS: Male Sprague-Dawley rats(250-300 g) were fasted for 24 h with free access to water prior to the operation.Eighteen rats were randomly divided into three experimental groups: S group(n = 6),rats were subjected to isolation of the superior mesenteric artery(SMA) for 40 min,then the abdomen was closed; IRgroup(n = 6),rats were subjected to clamping the SMA 40 min,and the abdomen was closed followed by a 4-h reperfusion; IP group(n = 6) rats underwent three cycles of 5 min ischemia and 5 min reperfusion,then clamping of the SMA for 40 min,then the abdomen was closed and a 4-h reperfusion followed.All animals were euthanized by barbiturate overdose(150 mg/kg pentobarbital sodium,i.v.) for tissue collection,and the SMA was isolated via median abdominal incision.Intestinal histologic injury was observed.Malondialdehyde(MDA),myeloperoxidase(MPO) and tumor necrosis factor(TNF)-a concentrations in intestinal tissue were measured.Intercellular adhesion molecule(ICAM)-1 and vascular cell adhesion molecule(VCAM)-1 expression,as well as nuclear factor(NF)-κB activity and expression in intestinal tissue were also determined.RESULTS: Compared with the IR group,IP reduced IR-induced histologic injury of the intestine in rats(2.00 ± 0.71 vs 3.60 ± 0.84,P 0.05).IP significantly inhibited the increase in MDA content(5.6 ± 0.15 μmol/L vs 6.84 ± 0.18 μmol/L,P 0.01),MPO activity(0.13 ± 0.01 U/L vs 0.24 ± 0.01 U/L,P 0.01),and TNF-a levels(7.79 ± 2.35 pg/m L vs 10.87 ± 2.48 pg/m L,P 0.05) in the intestinal tissue of rats.IP also markedly ameliorated the increase in ICAM-1(204.67 ± 53.27 vs 353.33 ± 45.19,P 0.05) and VCAM-1(256.67 ± 58.59 vs 377.33 ± 41.42,P 0.05) protein expression in the intestinal tissues.Additionally,IP remarkably decreased NF-κB activity(0.48 ± 0.16 vs 0.76 ± 0.22,P 0.05) and protein expression(320.23 ± 38.16 vs 520.76 ± 40.53,P 0.01) in rat intestinal tissue.CONCLUSION: IP may protect against IR-induced intestinal injury by attenuation of the neutrophilendothelial adhesion cascade via reducing ICAM-1 and VCAM-1 expression and TNF-a-induced NF-κB signaling pathway activity.  相似文献   

8.
9.

Background/Aim:

To study the effect of L-arginine on apoptosis and necrosis induced by 1-h ischemia followed by 3-h reperfusion.

Materials and Methods:

Adult Wistar rats underwent 60 min of partial liver ischemia followed by 3-h reperfusion. Eighteen Wistar rats were divided into sham-operated control group (I) (n = 6), ischemia and reperfusion (I/R) group (0.9% saline (5 mL/kg, orally) for 7 days) (II) (n = 6), and L-arginine-treated group (10 mg/kg body weight daily orally for 7 days before inducing ischemia-reperfusion maneuver) (III) (n = 6). Apoptotic and necrotic hepatocytes, nitric oxide levels in hepatocytes, Bcl-2 mRNA, and Bcl-2 protein were measured. Liver injury was assessed by plasma alanine transaminases (ALT), aspartate transaminases (AST), liver histopathology, and electron microscopy.

Results:

An ischemic and reperfusion hepatocellular injury occurred as was indicated by increased serum ALT, AST, histopathology, and electron microscopy. Apoptosis and necrosis associated marker gene Bcl-2 mRNA and protein expression were decreased in I/R group. Pretreatment with L-arginine significantly decreased serum ALT and AST level and apoptotic and necrotic cells after 1 h ischemia followed by 3 h of reperfusion. Nitric oxide production in hepatocytes was increased twofold by L-arginine treatment when compared with I/R group. Histopathology and transmission electron microscopy (TEM) studies showed markedly diminished hepatocellular injury in L-arginine-pretreated rats during the hepatic I/R.

Conclusion:

Thus, it may be concluded that L-arginine afforded significant protection from necrosis and apoptosis in I/R injury by upregulated Bcl-2 gene and nitric oxide production.  相似文献   

10.
11.
AIM:To investigate the preventive effect of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) on bile duct ligation (BDL)induced liver fibrosis in rats. METHODS:Liver fibrosis in rats was induced by BDL and AcSDKP was infused subcutaneously for 2 wkvia a osmotic minipump (Alzet 2ML4) immediately after BDL operation. After scarifying, serum and liver specimens were collected. Hematoxylin and eosin staining, Sirius red staining, enzyme linked immunosorbent assay, Western blot or real-time polymerase chain reaction were used to determinate liver functions, histological alterations, collagen deposition, mRNA expression of markers for fibroblasts, transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7). RESULTS:When compared to model rats, chronic exogenous AcSDKP infusion suppressed profibrogenicTGF-β1 signaling, α-smooth muscle actin positivity (α-SMA), fibroblast specific protein-1 (FSP-1) staining and collagen gene expression. Col Ⅰ, Col Ⅲ, matrix metalloproteinase-2, tissue inhibitors of metallopro-teinase-1 and tissue inhibitors of metalloproteinase-2 mRNA expressions were all significantly downregulated by AcSDKP infusion (2.02 ± 1.10vs 14.16 ± 6.50, 2.02 ± 0.45vs 10.00 ± 3.35, 2.91 ± 0.30vs 7.83 ± 1.10, 4.64 ± 1.25 vs 18.52 ± 7.61, 0.46 ± 0.16 vs 0.34 ± 0.12, respectively, P 0.05). Chronic exogenous AcSDKP infusion attenuated BDL-induced liver injury, inflammation and fibrosis. BDL caused a remarkable increase in alanine transaminase, aspartate transaminase, total bilirubin, and prothrombin time, all of which were reduced by AcSDKP infusion. Mast cells, collagen accumulation, α-SMA, TGF-β1, FSP-1 and BMP-7 increased. The histological appearance of liver specimens was also improved. CONCLUSION:Infusion of exogenous AcSDKP attenu-ated BDL-induced fibrosis in the rat liver. Preservation of AcSDKP may be a useful therapeutic approach in the management of liver fibrosis.  相似文献   

12.
AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. I/R injury was induced by occlusion of the superior mesenteric artery for 30 min. Rats were treated with saline, BM MSCs (via intramucosal injection) or tumor necrosis factor (TNF)-α blocking antibodies (via the tail vein). I/R injury was assessed using transmission electron microscopy, hematoxylin and eosin (HE) staining, immunohistochemistry, western blotting and enzyme linked immunosorbent assay.RESULTS: Intestinal permeability increased, tight junctions (TJs) were disrupted, and zona occludens 1 (ZO-1) was downregulated after I/R injury. BM MSCs reduced intestinal mucosal barrier destruction, ZO-1 downregulation, and TJ disruption. The morphological abnormalities after intestinal I/R injury positively correlated with serum TNF-α levels. Administration of anti-TNF-α IgG or anti-TNF-α receptor 1 antibodies attenuated the intestinal ultrastructural changes, ZO-1 downregulation, and TJ disruption. CONCLUSION: Altered serum TNF-α levels play an important role in the ability of BM MSCs to protect against intestinal I/R injury.  相似文献   

13.
Background The protective effects against reperfusion injury of cardioprotective drugs have recently been evaluated and found to be inadequate. Guanxinshutong (GXST), a combination of the traditional herb and Mongolian medicine, is effective and safe in treating angina pectoris in clinical trials. We assess the cardioprotective effects of GXST against myocardial ischemia and reperfusion (MI/R) injury in rats and explore its possible mechanism. Methods Forty-five male Sprague Dawley rats were randomized into three groups: non-MI/R group (Sham, n = 15), MI/R group treated with vehicle (Control, n = 15) and MI/R group treated with GXST (Drug, n = 15). MI/R was induced by ligation of the left anterior descending coronary artery (LAD) for 30 minutes, followed by 2/24 hour reperfusion in the Control and Drug groups. In the Sham group, the LAD was exposed without occlusion. GXST powder (in the Drug group) or saline (in the Control and Sham groups) were administered via direct gastric gavage from 7 day prior to surgery. Blood samples were collected from the carotid artery (10 rats each group) after 2 hours of reperfusion, to determine the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and intercellular adhesion molecule-1 (ICAM-1) using enzyme-linked immunosorbent assays. The animals were then sacrificed and the hearts were harvested for histopathology and western blot analysis. Infarct size was measured in the remaining five rats in each group after 24 hours reperfusion. Results GXST significantly decreased levels of TNF-α, IL-1β, IL-6, ICAM-1, apoptosis index (AI) and infarct size. GXST also obviously inhibited nuclear factor kappa B (NF-κB) activity when compared with the Control group (all P < 0.05). Conclusions GXST is effective in protecting the myocardium against MI/R injury in rats. Its possible cardioprotective mechanism involves inhibition of the inflammatory response and apoptosis following MI/R injury.  相似文献   

14.
15.

BACKGROUND:

Tumour necrosis factor-alpha (TNF-α) has been reported to play an important role in ischemia reperfusion injury and ischemic preconditioning (IPC). However, its role is not completely understood. Recently, normothermic IPC (NIPC), hyperthermic IPC (HIPC), preconditioning (PC) with 17-beta estradiol (estrogen, E2) and E2 pretreatment were proven to be effective in reducing ischemia reperfusion injury.

OBJECTIVES:

To investigate the detrimental effects of TNF-α on the heart, and the protective effects of NIPC, HIPC, E2 PC and pretreatment on TNF-α-induced injury.

METHODS:

A Langendorff-perfused rat heart model was used for the present study. Hearts isolated from male rats were studied under eight different conditions (n=5 each): negative control; control treated with TNF-α without any further treatment; NIPC (preconditioned at 37°C); HIPC (preconditioned at 42°C); E2 PC; E2 pretreatment; normal, untreated hearts plus E2; or pretreated hearts perfused for 60 min with TNF-α and an E2-containing buffer.

RESULTS:

TNF-α treatment resulted in deterioration of heart function. HIPC offered better protection by significantly increasing left ventricular developed pressure (Pmax) and coronary flow (P<0.01), and by decreasing left ventricular end-diastolic pressure (P<0.01). NIPC or pretreatment of the hearts with E2 normalized left ventricular end-diastolic pressure, coronary flow and coronary vascular resistance (P<0.001); however, it did not normalize Pmax. The combination of E2 and HIPC did not show any synergetic protection; however, the addition of HIPC normalized Pmax (P<0.001).

CONCLUSIONS:

TNF-α treatment resulted in deterioration of heart hemodynamics, which were reversed by HIPC, E2 PC and pretreatment. The combination of these treatments did not add to the previously observed protection compared with when they were used individually.  相似文献   

16.
17.

BACKGROUND:

Osteogenic protein, a member of the transforming growth factor-beta superfamily, has been reported to decrease the expression of intercellular adhesive molecules and prevent neutrophil accumulation and activity in tissue injury.

OBJECTIVE:

To examine the effects of osteogenic protein on ischemia/reperfusion in rat hearts.

METHODS:

Reperfusion was established after a 90 min ligation of the proximal left coronary artery in rats. Recombinant human osteogenic protein-1 (200 μg/kg) was administered via the femoral vein just before reperfusion. Intercellular adhesion molecule-1 (ICAM-1) messenger RNA (mRNA) expression and infarct size were evaluated using Northern blotting and triphenyl tetrazolium chloride staining, respectively. Terminal deoxynucleotidyl transferase mediated biotin-16-2′-deoxyuridine-5′-triphosphate nick end labeling (TUNEL) staining was also performed.

RESULTS:

In osteogenic protein-1 treated rats, the expression of ICAM-1 mRNA in ischemia/reperfusion hearts rapidly increased 4 h after reperfusion, although, the increase was lower than that observed in the vehicle-treated hearts (7.4±1.6-fold versus 14.6±3.7-fold increase compared to the increase observed in preligation control hearts, respectively). Similarly, in day 1 and day 7 hearts, the increase in ICAM-1 mRNA expression was significantly lower in ischemia/reperfusion hearts from rats treated with osteogenic protein-1 than in vehicle-treated rats (2.5±0.1-fold versus 5.8±2.3-fold and 1.5±0.3-fold versus 3.5±0.2-fold, respectively). Infarct size in rats treated with osteogenic protein-1 was significantly smaller than that observed in rats treated with vehicle (13.1±1.2% versus 28.5±5.7% of the left ventricle, P<0.01). The percentage of TUNEL-positive cardiomyocytes in ischemia/reperfusion hearts in rats treated with osteogenic protein-1 was significantly lower than in rats treated with vehicle (17.1±5.3% versus 31.1±4.5%, P<0.01).

CONCLUSION:

The present study demonstrated that recombinant human osteogenic protein-1 suppressed ICAM-1 mRNA expression, reduced infarct size and decreased TUNEL-positive cardiomyocytes in ischemic/reperfused rat hearts.  相似文献   

18.
19.
BACKGROUND/AIMS: Ischemic injury in cold preserved livers is characterized by sinusoidal endothelial cell (SEC) detachment and matrix metalloproteinase activity. Upon reperfusion reversible ischemic injury becomes permanent with SEC rapidly undergoing apoptosis. Ischemic preconditioning prevents reperfusion injury after normothermic ischemia. We hypothesized that ischemic preconditioning, through an oxygen free radical burst, protects against injury during cold preservation and reperfusion. METHODS: Ischemic preconditioning was achieved in rats by clamping blood supply to the left and median lobes for 10 min followed by 15 min of reperfusion prior to preservation in cold University of Wisconsin solution for 30 h. In a second set of experiments, rats were pretreated with N-acetyl-cysteine (NAC). SEC apoptosis upon reperfusion was assessed in an isolated perfused rat liver (IPRL) model. RESULTS: SEC detachment and activities of matrix metalloproteinase were significantly reduced in preconditioned livers. A decrease of SEC apoptosis after 1h of reperfusion in the IPRL was noted in preconditioned livers compared to controls. Pretreatment with NAC reversed the beneficial effects of ischemic preconditioning on SEC detachment and apoptosis. CONCLUSIONS: Ischemic preconditioning is an effective strategy to prevent injury during cold preservation and after reperfusion. The protective effect is possibly mediated by oxygen free radicals.  相似文献   

20.
AIM: To investigate the effects of resveratrol on liver ischemia/reperfusion (I/R) injury in rats. METHODS: A total of 40 male Sprague-Dawley rats weighing 240-290 g were randomized into four groups of ten: (1) controls: data from unmanipulated animals; (2) sham group: rats subjected to the surgical procedure, except for liver I/R, and given saline; (3) I/R group: rats underwent liver ischemia for 45 rain followed by reperfusion for 45 rain; (4) I-R/Resveratrol group: rats pretreated with resveratrol (10 umol/L, iv). Liver tissues were obtained to determine antioxidant enzyme levels and for biochemical and histological evaluation. RESULTS: Plasma aminotransferase activities were higher in the I/R group than in the I-R/Resveratrol group. Malondialdehyde levels and the hepatic injury score decreased, while superoxide dismutase, catalase, and glutathione peroxidase levels increased in group 4 compared to group 3. In group 4, histopathological changes were significantly attenuated in resveratroltreated livers. CONCLUSION: These results suggest that resveratrol has protective effects against hepatic I/R injury, and is a potential therapeutic drug for ischemia reperfusionrelated liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号