首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies on the phosphoprotein synapsin II have revealed reduced expression in postmortem medial prefrontal cortex tissues from subjects with schizophrenia, and chronic antipsychotic drug treatment has resulted in concurrent increases in synapsin II mRNA and protein levels. Collectively, this research suggests a role of synapsin II in the pathophysiology of schizophrenia; however, whether synapsin II plays a causal role in this disease process still remains unclear. Therefore, the goal of this investigation was to examine whether synapsin II knockout mice display behavioral abnormalities commonly expressed in preclinical animal models of schizophrenia, namely deficits in prepulse inhibition (PPI), decreased social behavior, and locomotor hyperactivity. Results indicate that mice with knockout of the synapsin II gene demonstrate deficits in PPI at three prepulse intensities (67, 70, and 73 dB), along with deficits in habituation to startle to a 110 dB acoustic pulse. Knockout animals also expressed decreased social behavior and increased locomotor activity when compared to wildtype and heterozygous populations. Complete knockout of the synapsin II gene was confirmed in postmortem brain tissues via immunoblotting. In conclusion, these results confirm that synapsin II knockout mice display behavioral endophenotypes similar to established preclinical animal models of schizophrenia, and lend support to the notion that abnormalities in synapsin II expression may play a causal role in the underlying pathophysiological mechanisms of schizophrenia. Synapse 63:662–672, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Summary Phencyclidine (PCP) is an antagonist of the NMDA subtype of glutamate receptor. PCP treatment induces psychosis in normal humans, which provides a valuable model of schizophrenia. PCP administration also models some of the symptoms of schizophrenia in experimental animals. NMDA hypofunction has been hypothesized to explain these schizophrenia-like symptoms. Acute or chronic administration of the NMDA receptor antagonist PCP has been shown to induce several short or long-term effects in both humans and experimental animals. In an attempt to clarify the neurochemical substrates of these effects in the present study, we used quantitative autoradiography to examine the effects of chronic (14 days) PCP treatment on NMDA receptor binding in mouse brain following both a short- (1 and 24 h) and long-term (14 days) delay after the last PCP treatment. NMDA receptors were targeted using [3H]MK801. Chronic PCP treatment increased [3H]MK801 binding consistently in the hippocampus in the short-term (p < 0.01). Conversely in the long-term, there were widespread reductions in NMDA receptor binding and this effect was most evident in the hippocampus where a 35% reduction of binding was found (p < 0.001). These results suggest that the hippocampus has a strong involvement in both the short and long-term effects of PCP treatment and that reduced NMDA receptor function might be one of the neurochemical substrates of the long lasting actions of PCP or PCP-induced psychosis. Importantly, this study shows that the long-term delay following chronic PCP treatment more accurately represents a state of NMDA hypofunction than the short-term PCP model.  相似文献   

3.
BACKGROUND: Environmental factors during the neonatal period have long-lasting effects on the brain. Neonatal handling, an early mild stress, enhances the ability to cope with stress in adult rats. In humans, inappropriate stress responses increase the risk of schizophrenia in genetically predisposed individuals. We studied the effect of neonatal handling on the phencyclidine (PCP)-induced immobility time of rats in the forced swimming test (FST, an animal model of negative symptoms of schizophrenia) and on plasma adrenocorticotropic hormone (ACTH) as a measure of hypothalamic-pituitary-adrenal axis (HPA) reactivity. METHODS: Pups were removed from their mothers 15 min/21 days after birth. Postnatal day 65: animals were submitted to restraint stress. Postnatal day 75: after PCP treatment (5 mg/kg/5 days) animals were submitted to the FST. RESULTS: Neonatal handling reduced HPA reactivity to passive stress (restraint) but not to active coping stress (forced swimming). Immobilization time was significantly lower in saline- and PCP-treated, handled animals than in non-handled ones. Handling prevented the ACTH increase induced by PCP that was observed in the non-handled rats after FST. CONCLUSIONS: First, neonatal handling protects animals from acquiring the schizophrenic-like behavior provoked by sub-chronic PCP treatment, which was associated with a reduced HPA activity. Second, the beneficial properties of handling in stress responses seem to depend on the type of stress.  相似文献   

4.
5.
Objective: The aim of this study was to investigate the association between the exonic single nucleotide polymorphisms (SNPs) of synapsin I (SYN1) (rs1142636, Asn170Asn, Xp11.23) and SYN2 (rs2289708, 3′‐untranslated region, 3p25) in schizopherenia. Methods: Two hundred eighty six schizophrenia patients and 304 control subjects were recruited. SNPs with a know heterozygosity and minor allele frequency (MAF) > 0.1 in Asian populations were selected and genotyped by direct sequencing. Results: The allelic frequencies of rs1142636 (SYN1) were associated with schizophrenia (P < 0.05), respectively. The allelic frequency of rs1142636 in all subjects was associated with schizophrenia [P = 0.000059, OR = 2.17 (95% CI = 1.47–3.18)]. The C allele frequency of rs1142636 was higher in schizophrenia (20.8%) than that in controls (10.8%). In the analysis of gender, the allelic frequency of rs1142636 was also strongly associated with female schizophrenia [P = 0.0001, OR = 2.65 (95% CI = 1.61–4.36)], but not with male schizophrenia. The C allele frequency of rs1142636 was higher in female schizophrenia (22.2%) than that in female controls (9.7%). The rs2289708 SNP (SYN2) did not show any association between schizophrenia and controls. Conclusions: These results suggest that the C allele of a synonymous SNP (rs1142636, Asn170Asn, Xp11.23) in SYN1 may be a risk factor for the susceptibility of Koreran female schizophrenia. Synapse 66:979–983, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Synapsin II is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene (3p25) in the etiology of schizophrenia (SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II mRNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world’s population, amounting to 51 million people today. The disorder is characterized by positive (hallucinations, paranoia), negative (social withdrawal, lack of motivation), and cognitive (memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.  相似文献   

7.
Dysfunctional maturation of neural networks, particularly hippocampus-prefrontal networks, may be of particular interest in determining the pathophysiology of schizophrenia. Phencyclidine (PCP)-induced symptoms in humans appear to offer a more complete model of schizophrenia than do amphetamine-induced symptoms. This study investigated the effects of intermittent i.p. injections of PCP (7.5 mg/kg) on cell proliferation and survival of granule cells in the dentate gyrus of the rat brain using quantitative immunohistochemical techniques for 5-bromo-2'-deoxyuridine (BrdU)-positive cells. After repeated PCP injection for 14 days, mean scores for stereotyped behavior increased with the number of injections, while scores for ataxia and backpedaling as serotonergic behaviors gradually decreased. The number of BrdU-positive cells decreased by 23% in the subgranular zone of the dentate gyrus by 24 h after repeated injections. However, decreased levels of BrdU-positive cells returned to control levels within 1 week. Differentiation of newly formed cells was not influenced. Repeated PCP administration after BrdU injection did not exert any effects on survival of newly generated cells. These findings suggest that transient disturbances of cell proliferation in the dentate gyrus occur under PCP-related behavioral abnormalities. Whether disturbed cell proliferation would thus be closely implicated in the development of behavioral sensitization induced by PCP administration is unclear, but this would possibly result from adaptation to new pharmacological conditions under behavioral sensitization or stressful conditions of PCP-related abnormal behaviors. Further studies are required to elucidate the biological significance of hippocampal neurogenesis in the mechanisms underlying the development of cognitive dysfunctions and the psychosis of schizophrenia.  相似文献   

8.
9.
Summary We have previously shown that a single dose of PCP produces a dose-related increase in NMDA-sensitive3H-glutamate binding in CA1 of hippocampus 24 hours later, and some regional changes in kainate binding. Here we report that dizocilpine (MK 801) (O.1 mg/kg and 1 mg/kg), a selective agonist at the PCP receptor and a noncompetitive antagonist of NMDA, produces a similar increase in NMDA-sensitive glutamate and kainate receptor binding in hippocampus 24 hours after a dose. These observations support the conclusion that blockade of glutamate-mediated transmission at the NMDA receptor selectively increases NMDA-sensitive glutamate receptor binding in CA1 of hippocampus and kainate binding in CA3 and dentate gyrus at putatively delayed time points. Several additional areas outside of hippocampus also showed receptor changes at 24 hours after MK801.  相似文献   

10.
In the present study, the comparative mechanisms of action of phencyclidine (PCP) and amphetamine were addressed employing the parameter of locomotion in rats. PCP-induced locomotion (PLOC) was potently blocked by the selective serotonin (5-HT)2A vs. D2 antagonists, SR46349, MDL100,907, ritanserin and fananserin, which barely affected amphetamine-induced locomotion (ALOC). In contrast, the selective D2 vs. 5-HT2A antagonists, eticlopride, raclopride and amisulpride, preferentially inhibited ALOC vs. PLOC. The potency of these drugs and 12 multireceptorial antipsychotics in inhibiting PLOC vs. ALOC correlated significantly with affinities at 5-HT2A vs. D2 receptors, respectively. Amphetamine and PCP both dose dependently increased dialysate levels of dopamine (DA) and 5-HT in the nucleus accumbens, striatum and frontal cortex (FCX) of freely moving rats, but PCP was proportionally more effective than amphetamine in elevating levels of 5-HT vs. DA in the accumbens. Further, whereas microinjection of PCP into the accumbens elicited locomotion, its introduction into the striatum or FCX was ineffective. The action of intra-accumbens PCP, but not intra-accumbens amphetamine, was abolished by SR46349 and clozapine. Parachloroamphetamine, which depleted accumbens pools of 5-HT but not DA, likewise abolished PLOC without affecting ALOC. In contrast, intra-accumbens 6-hydroxydopamine (6-OHDA), which depleted DA but not 5-HT, abolished ALOC but only partially attenuated PLOC. In conclusion, PLOC involves (indirect) activation of accumbens-localized 5-HT2A receptors by 5-HT. PLOC is, correspondingly, more potently blocked than ALOC by antipsychotics displaying marked affinity at 5-HT2A receptors.  相似文献   

11.
The interaction of phencyclidine (PCP) with its specific receptor sites in the central nervous system has been further characterized. Kinetic association and dissociation rate constants of 2.9 × 106 M−1 and 4.8 × 10−1 were determined, yielding a kinetic KD of 1.6 × 10−7 M, in agreement with the KD previously determined at equilibrium. Permissible separation time of 13 s was calculated from the kinetic data, well above the actual separation time of less than 10 s in the rapid filtration assay. Presoaking of filters in 0.01% poly-l-lysine eliminated displacable [3H]PCP adsorption to filter material. Binding data obtained via centrifigation assays was identical to that obtained with the rapid filtration method. Stereospecificity of the PCP receptor was demonstrated by the finding that (+)-ketamine is four-fold more potent than (−)-ketamine in displacing specifically bound [3H]PCP. Several proteolytic enzymes including trypsin, papain and thermolysin potently inactivated PCP receptors. Detailed regional distribution studies showed highest density of PCP receptors in subicular cortex and hippocampus, intermediate levels in hypothalamus, striatum, frontal cortex and cerebellum, lower levels in brainstem and spinal cord, and negligible levels in corpus callosum, a white- matter control area. Benzomorphan opiates with PCP-like behavioral effects interact with the PCP receptor. These data support the pharmacological relevance of the PCP receptor site as demonstrated by the rapid filtration method.  相似文献   

12.
Phencyclidine (PCP) has been shown to cause neurotoxicity in rat retrosplenial cortex following a single administration, although the precise mechanism underlying PCP-induced neurotoxicity is unclear. Using in situ hybridization and immunohistochemistry, we studied the effects of PCP on expression of immediate early gene zif268 mRNA and zif268 protein in the rat brain. High constitutive levels of zif268 mRNA and zif268 immunoreactivity were observed in the brain of control rats. Administration of PCP (12.5, 25 or 50 mg/kg, i.p., 6 h) caused marked induction of zif268 mRNA in the rat retrosplenial cortex, in a dose-dependent manner. However, the basal levels of zif268 mRNA in the other regions of cerebral cortex were decreased by administration of PCP. Emulsion-autoradiographical study suggested that marked expression of zif268 mRNA was observed in the layers III and IV of retrosplenial cortex where the neurotoxicity of PCP was detected. Furthermore, zif268 immunoreactivity in the layer IV of retrosplenial cortex was not changed by administration of PCP (25 mg/kg, i.p., 5 h), but that in the other layers of retrosplenial cortex was reduced by PCP. These results suggest that immediate early gene zif268 may, in part, play a role in the neurotoxicity of NMDA receptor antagonists such as PCP.  相似文献   

13.
Phencyclidine (PCP) is a psychotomimetic drug associated with acute and delayed mental effects in normal humans and psychosis exacerbation in already psychotic schizophrenic individuals. We have previously described a dose-sensitive, delayed action of PCP on regional cerebral metabolism in the rat which occurs over 48 hours and a late (24 hour) change in N-methyl-d-aspartate (NMDA) and kainate binding in hippocampal areas. Now, we report the complex time course of PCP action on NMDA-sensitive glutamate receptor binding in rat in distinct subregions of the hippocampus extending over 48 hours. Selectively; in the hippocampal CA1 region, a single dose of PCP (8.6 mg/kg) produced an increase in receptor binding at 12 hours (+24%), sustained to 24 hours (+29percnt;) compared with the 3 hour post-PCP value (-15percnt;) and then a return to control levels of receptor binding at 48 hours. Other regions of hippocampus showed distinctive time-dependent changes in NMDA-sensitive glutamate receptor binding as well. In addition, PCP produced a change in kainate receptor binding in the dentate gyrus across the 48-hour time period. In other representative brain regions, PCP did not alter NMDA or kainate binding over the same time course. This extended neurochemical effect of PCP on glutamate receptors in rat hippocampus parallels, in time, certain delayed psychological actions of PCP in humans and thus may be relevant to psychosis, especially to PCP-induced psychosis. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Summary D-cycloserine, a partial agonist at the strichnine-insensitive glycine site of the NMDA receptor complex, was tested as adjuvant treatment to conventional neuroleptics in chronic schizophrenic volunteers. The drug was administered, o.a.d., at the daily dose of 250 mg for six weeks. Mental status outcome measures were completed at the end of each week of treatment. The major finding was a deteriora of the patients' clinical condition, specifically of their psychotic symptoms. These preliminary results are discussed among others in view of d-cycloserine pharmacologic properties and recent findings on the interaction between NMDA agonists and dopamine system. This study, finally, suggests the need for a controlled dose-finding trial to establish the activity and a therapeutic window of this drug in schizophrenia.  相似文献   

15.
Phencyclidine and other N-methyl-d -aspartate receptor antagonists are toxic to pyramidal neurons in the posterior cingulate/retrosplenial cortex of rat brain. Previous studies have shown induction of heat shock protein 70 in affected neurons. In this study, expression of haem oxygenase-1, a heat shock protein induced by oxidative stress, was examined in rat forebrain after administration of a single intraperitoneal dose of phencyclidine (50 mg/kg). Northern and Western blot analyses of brain tissue extracts from phencyclidine-treated rats revealed a marked induction of haem oxygenase-1 mRNA and protein, respectively. Immunohistochemistry studies revealed that phencyclidine increased haem oxygenase-1 immunoreactivity primarily in posterior cingulate/retrosplenial, piriform and entorhinal cortices, striatum and hippocampus. Haem oxygenase-1 protein was induced in non-neuronal cells, mainly astrocytes. Some microglia expressing haem oxygenase-1 protein were also found in the posterior cingulate/retrosplenial cortex. Haem oxygenase-1 immunoreactive astrocytes and microglia were present in close proximity to the heat shock protein 70-positive neurons in the posterior cingulate/retrosplenial cortex following phencyclidine. Pretreatment of rats with 1,3-dimethylthiourea, an antioxidant, significantly reduced haem oxygenase-1 protein induction by phencyclidine. Thus, induction of haem oxygenase-1 in glia by phencyclidine appears to be mediated mostly by oxidative stress. Experiments with the amino cupric silver stain for neuronal degeneration revealed phencyclidine-induced neurotoxicity in the posterior cingulate/retrosplenial cortex. The number of affected neurons was significantly reduced after 1,3-dimethylthiourea pretreatment. This suggests that the neurotoxicity of N-methyl-d -aspartate antagonists is due in part to the oxidative stress and may be amenable to therapeutic interventions.  相似文献   

16.
Synapsin II is a synaptic vesicle-associated phosphoprotein that has been implicated in the pathophysiology of schizophrenia. Studies have demonstrated reductions in synapsin II mRNA and protein in medial prefrontal cortical post-mortem samples from patients with schizophrenia, genetic associations between synapsin II and schizophrenia, and synapsin II protein regulation by dopamine receptor activation. Collectively, this research indicates a relationship between synapsin II dysregulation and schizophrenia; however, it remains unknown whether perturbations in synapsin II play a role in the pathophysiology of this disease. The aim of this project was to evaluate animals with selective knock-down of synapsin II in the medial prefrontal cortex. After continuous infusion of synapsin II antisense sequences, animals were examined for the presence of schizophrenic-like behavioral phenotypes and assessed on the response to clinically relevant antipsychotic drugs. Our results indicate that rats with selective reductions in medial prefrontal cortical synapsin II demonstrate deficits in sensorimotor gating (prepulse inhibition), reduced social behavior, and hyperlocomotion, which are corrected by the atypical antipsychotic drug olanzapine. Additionally, synapsin II knock-down disrupts serial search efficiency. These behavioral changes are accompanied by reductions in vesicular neurotransmitter transporter protein concentrations for glutamate (VGLUT1 and VGLUT2) and GABA (VGAT), without affecting dopamine (VMAT2). These results implicate a causal role for decreased synapsin II in the medial prefrontal cortex in the pathophysiology of schizophrenia and the mechanisms of aberrant prefrontal cortical circuitry, and suggest that synapsin II may potentially serve as a novel therapeutic target for this disorder.  相似文献   

17.
18.
BACKGROUND: It has been demonstrated that the septal nucleus is involved in the pathogenesis of schizophrenia. Based on autopsies of schizophrenia patients, studies have shown a reduced number of septal nucleus neurons and gila. In addition, experimental rat models of schizophrenia have shown increased dopamine receptor D2 binding sites in the basal ganglia, septal nuclei, and substantia nigra. Previous studies have demonstrated that the septal nucleus modulates dopamine metabolic disorder and dopamine D2 receptor balance.OBJECTIVE: Dopamine D2 receptor expression in a rat model of schizophrenia, combined with antipsychotic drugs, was analyzed in the prefrontal lobe, striatum, and brainstem. In situ hybridization was used to observe the effects of stereotactic septal nucleus lesions on dopamine D2 receptor expression in the brains of methylamphetamine-treated rats. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed in the Laboratory of General Institute of Psychosurgery, Third Hospital of Chinese PLA from November 2005 to June 2006. MATERIALS: A total of 120 healthy, adult Sprague Dawley rats, weighing approximately 200 g, were included. Methylamphetamine (Sigma, USA) and an in situ hybridization detection kit for dopamine D2 receptor (Boster, China) were also used for this study. METHODS: All rats were randomly allocated to the following 4 groups, with 30 rats in each group: normal control, simple administration, septal nucleus lesion, and sham-operated groups. In the normal control group, rats were not administered or lesioned. In the remaining 3 groups, rats were intraperitoneally administered 10 mg/kg methylamphetamine, once per day, for 15 successive days to establish a schizophrenia model. Following successful model establishment, rats from the septal nucleus lesion group were subjected to stereotactic septal nucleus lesions. The cranial bone was exposed in rats from the sham-operated group, and the septal nucleus was not lesioned. MAIN OUTCOME MEASURES: At 7 days post-surgery, dopamine D2 receptor expression in the prefrontal lobe, striatum, and brainstem were detected by in situ hybridization. RESULTS: Dopamine D2 receptor expression in the rat prefrontal lobe, striatum, and brainstem was significantly higher in the simple administration group and sham-operated group, compared with the normal control group (P<0.01). In the septal nucleus lesion group, dopamine D2 receptor expression was significantly less than the simple administration and sham-operated groups, (P<0.01). There was no significant difference in dopamine D2 receptor expression between the simple administration and sham-operated groups (P>0.05). CONCLUSION: Septal nucleus lesions reduce dopamine D2 receptor expression in the prefrontal lobe, striatum, and brainstem in a rat model of schizophrenia, indicating that the septal nucleus modulates dopamine D2 receptor expression.  相似文献   

19.
20.
探讨BDNF对体外培养的大鼠脊髓前角神经元内突触素I与突触囊泡素(SYN)表达的影响。取孕14 d大鼠子宫内胎鼠的脊髓腹侧部分神经元,体外有血清培养。在培养7 d后.随机分成对照组、BDNF组和抗BDNF组。BDNF组培养液中加入BDNF(20 ng/ml),抗BDNF组培养液中加入BDNF抗体(20цg/ml),对照组加入等量Hanks液。3 d后在倒置显微镜下计数三组神经元成活数,并用NF-200、MAP-2、NSE的免疫组化反应对神经细胞进行鉴定。行突触素I与SYN免疫组化反应,对部分细胞行突触素I mRNA原位杂交反应,运用图像分析系统对突触素I与SYN免疫反应阳性产物以及突触素I原位杂交反应阳性产物作光密度分析。结果发现有血清培养时各组脊髓前角神经元的存活数差异无显著性 (P>0.05);BDNF组突触素I与SYN免疫反应阳性产物的平均光密度值高于其它两组,抗BDNF组最低(P<0.01)。BDNP组突触素I mRNA阳性产物的平均光密度值明显高于其它两组,抗BDNF组突触素I mRNA阳性产物的平均光密度值最低(P<0.01)。本研究结果提示BDNF对有血清培养时脊髓前角神经元的存活没有明显影响,但BDNF可明显上调培养的脊髓前角神经元内突触素I与SYN的表达  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号