首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL‐17 is produced not only by CD4+ αβ T cells, but also CD8+ αβ T cells, NKT cells, and γδ T cells, plus some non‐T cells, including macrophages and neutrophils. The ability of IL‐17 to deploy neutrophils to sites of inflammation imparts this cytokine with a key role in diseases of several types. Surprisingly, γδ T cells are responsible for much of the IL‐17 produced in several disease models, particularly early on.  相似文献   

2.
IL‐18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T‐cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL‐18Rα and provide evidence that IL‐18Rα expression is induced on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RBhi T‐cell transfer colitis model, we show that IL‐18Rα is expressed on IFN‐γ+, IL‐17+, and IL‐17+IFN‐γ+ effector CD4+ T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required for the optimal generation and/or maintenance of IFN‐γ‐producing cells in the cLP. In the steady state and during colitis, TCR‐independent cytokine‐induced IFN‐γ and IL‐17 production by intestinal CD4+ T cells was largely IL‐18Rα?dependent. Despite these findings however, IL‐18Rα?deficient CD4+ T cells induced comparable intestinal pathology to WT CD4+ T cells. These findings suggest that IL‐18‐dependent cytokine induced activation of CD4+ T cells is not critical for the development of T‐cell‐mediated colitis.  相似文献   

3.
Vitamin D deficiency is associated with increased incidence and severity of various immune‐mediated diseases. Active vitamin D (1α,25‐dihydroxyvitamin D3; 1,25(OH)2D3) up‐regulates CD4+ T‐cell expression of the purine ectonucleotidase CD39, a molecule that is associated with the generation of anti‐inflammatory adenosine. Here we aimed to investigate the direct impact of 1,25(OH)2D3 on expression of the downstream ecto‐5′‐nucleotidase CD73 by human CD4 T cells, and components of the transforming growth factor‐β (TGF‐β) pathway, which have been implicated in the modulation of CD73 by murine T cells. At 10?8 to 10?7 m , 1,25(OH)2D3 significantly increased expression of CD73 on peripheral human CD4+ T cells. Although 1,25(OH)2D3 did not affect the mRNA expression of latent TGF‐β1, 1,25(OH)2D3 did up‐regulate expression of TGF‐β‐associated molecules [latency‐associated peptide (LAP), glycophorin A repetitions predominant (GARP), GP96, neuropilin‐1, thrombospondin‐1 and αv integrin] which is likely to have contributed to the observed enhancement in TGF‐β bioactivity. CD73 was highly co‐expressed with LAP and GARP following 1,25(OH)2D3 treatment, but unexpectedly, each of these cell surface molecules was expressed primarily on CD4+ Foxp3 T cells, rather than CD4+ Foxp3+ T cells. Notably, neutralization of TGF‐β significantly impaired 1,25(OH)2D3‐mediated induction of CD73. Collectively, we show that 1,25(OH)2D3 enhances expression of CD73 on CD4+ Foxp3 T cells in a process that is at least partially TGF‐β‐dependent. These data reveal an additional contributing mechanism by which vitamin D may be protective in immune‐mediated disease.  相似文献   

4.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

5.
Human Th17 clones and circulating Th17 cells showed lower susceptibility to the anti‐proliferative effect of TGF‐β than Th1 and Th2 clones or circulating Th1‐oriented T cells, respectively. Accordingly, human Th17 cells exhibited lower expression of clusterin, and higher Bcl‐2 expression and reduced apoptosis in the presence of TGF‐β, in comparison with Th1 cells. Umbilical cord blood naïve CD161+CD4+ T cells, which contain the precursors of human Th17 cells, differentiated into IL‐17A‐producing cells only in response to IL‐1β plus IL‐23, even in serum‐free cultures. TGF‐β had no effect on constitutive RORγt expression by umbilical cord blood CD161+ T cells but it increased the relative proportions of CD161+ T cells differentiating into Th17 cells in response to IL‐1β plus IL‐23, whereas under the same conditions it inhibited both T‐bet expression and Th1 development. These data suggest that TGF‐β is not critical for the differentiation of human Th17 cells, but indirectly favors their expansion because Th17 cells are poorly susceptible to its suppressive effects.  相似文献   

6.
β7 is expressed on subsets of thymocytes, while T and B lymphocytes show heterogeneous expression of β7. Here, we examine the phenotype of the thymocyte and lymphocyte subsets which express α4β7 and αEβ7 using mAb against αEβ7 and mAb DATK32 which recognizes a combinatorial epitope on α4β7. β7+ thymocytes have a mature phenotype: TcR+, CD11ahi CD44hi HSAdull. Small subsets of double-negative CD4?CD8?, single-positive CD4+ and CD8+ thymocytes express α7, while double-positive CD4+ CD8+ thymocytes are β7. However, two integrins αEβ7 and α4β7 recognized by anti-β7 are not expressed on an identical subpopulation of thymocytes, as βEα7+α4β7?, αEβ7+α4β7+ and αEβ7?α4β7+ thymocyte subsets are evident. Similarly, intraepithelial lymphocytes express high levels of αEβ7 but little α4β7. In the spleen, Peyer's patches and lymph nodes, α4β7 is expressed at higher levels on most B lymphocytes than on the majority of T lymphocytes, while a small subset of T lymphocytes, which includes both CD4+ and CD8+ lymphocytes, express high levels of β7 in the form of α4β7 and αEβ7, although, as observed with lymphocytes, not all α4β7hi CD4? lymphocytes expressed α4β7. The population of α4β7hi CD4 lymphocytes are enriched in Peyer's patches and form subsets of the memory CD4+ lymphocyte population, which can be further subdivided on the basis of αEβ7, L-selectin and α4 expression. Therefore, memory CD4+ lymphocytes are highly heterogeneous in their expression of adhesion receptors, and presumably these subpopulations will exhibit very different trafficking properties.  相似文献   

7.
The salivary glands (SGs) of virus‐immune mice contain substantial numbers of tissue‐resident memory CD8+ T cells (TRM cells) that can provide immunity to local infections. Integrins regulate entry of activated T cells into nonlymphoid tissues but the molecules that mediate migration of virus‐specific CD8+ T cells to the SGs have not yet been defined. Here, we found that polyinosinic‐polycytidylic acid (poly(I:C)) strongly promoted the accumulation of P14 TCR‐transgenic CD8+ TRM cells in SGs in an α4β1 integrin‐dependent manner. After infection with lymphocytic choriomeningitis virus, accumulation of P14 TRM cells in SGs and intestine but not in kidney was also α4 integrin dependent. Blockade of α4β7 by monoclonal antibodies (mAbs) inhibited lymphocytic choriomeningitis virus‐induced accumulation of P14 TRM cells in the intestine but not in SGs. In conclusion, our data reveal that α4β1 integrin mediates CD8+ TRM accumulation in SGs and that poly(I:C) can be used to direct activated CD8+ T cells to this organ.  相似文献   

8.
Celiac disease (CD) is characterized by a spectrum of intestinal inflammatory lesions. Most patients have villous atrophy (overt‐CD), while others have a morphologically normal mucosa, despite the presence of CD‐specific autoantibodies (potential‐CD). As the mechanism responsible for villous atrophy is not completely elucidated, we investigated biomarkers specific for the different celiac lesions. Phenotype and cytokine production of intestinal mucosa cells were analyzed by flow cytometry in gut biopsies of children with overt‐ or potential‐CD and in healthy controls. Density of TCRγδ+ T cells was found markedly enhanced in intestinal mucosa of children with overt‐CD compared to potential‐CD or controls. By contrast, very few IL4+ T cells infiltrated the mucosa with villous atrophy compared to morphologically normal mucosa. IL4+ T cells were classical CD4+ T‐helper cells (CD161?), producing or not IFN‐γ, and negative for IL17A. Our study demonstrated that the transition to villous atrophy in CD patients is characterized by increased density of TCRγδ+ T cells, and concomitant disappearance of IL4+ cells. These findings suggest that immunomodulatory mechanisms are active in potential‐CD to counteract the inflammatory cascade responsible of villous atrophy. Further studies are required to validate the use of IL4+ and TCRγδ+ T cells as biomarkers of the different CD forms.  相似文献   

9.
Extensive evidence suggests that the immune system exerts powerful effects on bone cells, particularly in chronic disease pathologies such as rheumatoid arthritis (RA). The chronic inflammatory state in RA, particularly the excessive production of T cell‐derived proinflammatory cytokines such as tumour necrosis factor (TNF)‐α and interleukin (IL)‐17, triggers bone erosions through the increased stimulation of osteoclast formation and activity. While evidence supports a role for IL‐17 and TNF‐α secreted by conventional CD4+ T cells in RA, recent evidence in animal models of RA have implicated γδ T cells as a major producer of pathogenic IL‐17. However, the capacity of γδ T cells to influence osteoclast formation and activity in humans has not yet been investigated widely. To address this issue we investigated the effects of γδ T cells on osteoclast differentiation and resorptive activity. We have demonstrated that anti‐CD3/CD28‐stimulated γδ T cells or CD4+ T cells inhibit human osteoclast formation and resorptive activity in vitro. Furthermore, we assessed cytokine production by CD3/CD28‐stimulated γδ T cells and observed a lack of IL‐17 production, with activated γδ T cells producing abundant interferon (IFN)‐γ. The neutralization of IFN‐γ markedly restored the formation of osteoclasts from precursor cells and the resorptive activity of mature osteoclasts, suggesting that IFN‐γ is the major factor responsible for the inhibitory role of activated γδ T cells on osteoclastogenesis and resorptive activity of mature osteoclasts. Our work therefore provides new insights on the interactions between γδ T cells and osteoclasts in humans.  相似文献   

10.
11.
Integrins regulate leukocyte trafficking during homeostasis and inflammatory conditions. However, the role of α4 and β7 integrins in guiding eosinophil transmigration into the lungs during filarial manifestation of Tropical Pulmonary Eosinophilia (TPE) has not been explored. In this study, mice exhibiting TPE manifestations were administered with in vivo neutralizing antibodies against integrins α4 and β7 or their combination and immuno‐pathological parameters were evaluated. Results show an intact lung barrier, significantly lower lung inflammation and reduced eosinophil counts in the Bronchoalveolar lavage fluid and lungs of mice receiving anti‐α4+β7 treatment. Reduced eosinophil peroxidase and β‐hexosaminidase activity, downregulation of inflammatory genes, lower production of inflammatory lipid intermediates like prostaglandins E2 and D2, leukotriene B4 and cysteinyl leukotrienes were also noted in anti‐α4+β7 treated mice. Reduced accumulation of central memory, effector memory, regulatory T cells and lower production of IL‐4, IL‐5, and TGF‐β were other cardinal features of anti‐α4+β7 treated mice lungs. Flow cytometry‐sorted lung eosinophils from anti‐α4+β7 treated mice showed higher apoptotic potential, downregulated anti‐apoptotic gene Bcl‐2, and exhibited reduced F‐actin polymerization and calcium influx as compared to IgG controls. In summary, neutralization of α4+β7 integrins impairs the transmigration, activation and survival of eosinophils and reduces TPE induced pathology in mice lungs.  相似文献   

12.
After the development of highly active anti‐retroviral therapy, it became clear that the majority of emergent HIV‐1 is macrophage‐tropic and infects CD4+, CCR5‐expressing cells (R5‐tropic). There are three distinct cell populations, R5‐tropic, HIV‐1‐susceptible CD4+ cells: (i) natural killer T (NKT) cells, (ii) dendritic cells and macrophages, and (iii) tissue‐associated T cells residing primarily at mucosal surfaces. We have confirmed that CD4+ NKT cells derived from peripheral blood mononuclear cells (PBMCs) predominantly express CCR5 rather than CXCR4, whereas the reverse is true for CD4+ T cells derived from circulating PBMCs, and that R5‐tropic HIV‐1 expands efficiently in the CD4+ NKT cells. Moreover, when PBMCs depleted of CD8α+ cells were stimulated in the presence of α‐galactosylceramide (α‐GalCer) and R5‐tropic HIV‐1 [NL(AD8)], the production of HIV‐1 virions was not suppressed, whereas, similar to the untreated PBMCs, depletion of CD8β+ cells from PBMCs significantly inhibited virion production. These findings suggest that CD8αα+ but not CD8αβ+ cells may have the ability to inhibit R5‐tropic HIV‐1 replication in CD4+ NKT cells. Here, we show that co‐culturing R5‐tropic HIV‐1‐infected CD4+ NKT cells with CD8αα+ γδ T cells, in particular Vγ1Vδ1 cells, but not with CD8αα+ NKT cells or CD8αα+ dendritic cells, inhibits HIV‐1 replication mainly by secreting chemokines, such as macrophage inflammatory proteins 1α and 1β and RANTES. Collectively, these results indicate the importance of CD8αα+ γδ T cells in the control of R5‐tropic HIV‐1 replication and persistence in CD4+ NKT cells.  相似文献   

13.
14.
Postganglionic sympathetic neurons innervate secondary lymphoid organs and secrete norepinephrine (NE) as the primary neurotransmitter. NE binds and signals through five distinct members of the adrenergic receptor family. In this study, we show elevated expression of the β2‐adrenergic receptor (ADRB2) on primary human CD8+ effector memory T cells. Treatment of both human and murine CD8+ T cells with NE decreased IFN‐γ and TNF‐α secretion and suppressed their cytolytic capacity in response to T‐cell receptor (TCR) activation. The effects of NE were specifically reversed by β 2‐specific antagonists. Adrb2?/? CD8+ T cells were completely resistant to the effects of NE. Further, the ADRB2‐specific pharmacological ligand, albuterol, significantly suppressed effector functions in both human and mouse CD8+ T cells. While both TCR activation and stimulation with IL‐12 + IL‐18 were able to induce inflammatory cytokine secretion, NE failed to suppress IFN‐γ secretion in response to IL‐12 + IL18. Finally, the long‐acting ADRB2‐specific agonist, salmeterol, markedly reduced the cytokine secretion capacity of CD8+ T cells in response to infection with vesicular stomatitis virus. This study reveals a novel intrinsic role for ADRB2 signaling in CD8+ T‐cell function and underscores the novel role this pathway plays in adaptive T‐cell responses to infection.  相似文献   

15.
IL‐35 is a recently identified cytokine exhibiting potent immunosuppressive properties. The therapeutic potential and effects of IL‐35 on pathogenic T effector cells (Teff) and Foxp3+ Treg, however, are ill defined. We tested the capacity of IL‐35 to suppress ongoing autoimmunity in NOD mice. For this purpose, an adeno‐associated virus vector in which IL‐35 transgene expression is selectively targeted to β cells via an insulin promoter (AAV8mIP‐IL35) was used. AAV8mIP‐IL35 vaccination of NOD mice at a late preclinical stage of type 1 diabetes (T1D) suppressed β‐cell autoimmunity and prevented diabetes onset. Numbers of islet‐resident conventional CD4+ and CD8+ T cells, and DCs were reduced within 4 weeks of AAV8mIP‐IL35 treatment. The diminished islet T‐cell pool correlated with suppressed proliferation, and a decreased frequency of IFN‐γ‐expressing Teff. Ectopic IL‐35 also reduced islet Foxp3+ Treg numbers and proliferation, and protection was independent of induction/expansion of adaptive islet immunoregulatory T cells. These findings demonstrate that IL‐35‐mediated suppression is sufficiently robust to block established β‐cell autoimmunity, and support the use of IL‐35 to treat T1D and other T‐cell‐mediated autoimmune diseases.  相似文献   

16.
Recent studies indicate that T helper type 1 (Th1) and 2 (Th2) lymphocytes differ in their expression of molecules that control T‐cell migration, including adhesion molecules and chemokine receptors. We investigated the relationship between cytokine production and expression of the homing receptor integrin α47 on T cells. We began by analysing cytokine production by human CD4+ CD45RA memory/effector T cells following brief (4 hr) stimulation with phorbol 12‐myristate 13‐acetate (PMA) and ionomycin. α4/ CD4+ T cells were more likely to produce the Th1 cytokine interferon‐γ (IFN‐γ) than were α47? CD4+ T cells in all six subjects studied. In contrast, production of the Th2 cytokine interleukin‐4 (IL‐4) was similar on α4/ and α47? CD4+ T cells. In addition, we found that human CD4+ CD45RA T cells that adhered to the α47 ligand mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) had a greater capacity to produce IFN‐γ than did non‐adherent cells, suggesting that the association between α47 expression and IFN‐γ production has functional significance. These results suggested that primary activation under Th1‐promoting conditions might favour expression of α47. We directly examined this possibility, and found that naïve murine CD4+ T cells activated under Th1‐promoting conditions expressed higher levels of α47 compared to cells activated under Th2‐promoting conditions. The association between α47 expression and IFN‐γ production by CD4+ T cells may help to determine the cytokine balance when MAdCAM‐1 is expressed at sites of inflammation in the intestine or elsewhere.  相似文献   

17.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

18.
《Immunology》2017,151(1):43-55
Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation‐induced hepatitis is unknown. In this study, using HBV transgenic (HBs‐Tg) and HBs‐Tg T‐cell receptor‐δ‐deficient (TCR‐δ−/−) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon‐γ (IFN‐γ) levels and more extensive necrosis. γδ T‐cell deficiency resulted in elevated IFN‐γ in CD4+ T cells but not in natural killer or natural killer T cells. The depletion of CD4+ T cells and neutralization of IFN‐γ reduced liver damage in HBs‐Tg and HBs‐Tg‐TCR‐δ−/− mice to a similar extent. Further investigation revealed that HBs‐Tg mice showed an enhanced interleukin‐17 (IL‐17) signature. The administration of exogenous IL‐23 enhanced IL‐17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs‐Tg mice, but not in HBs‐Tg‐TCR‐δ−/− mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A‐induced hepatitis by inhibiting IFN‐γ production from CD4+ T cells and are indispensable for IL‐23‐mediated protection against Con A‐induced hepatitis in HBs‐Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation‐induced liver damage.  相似文献   

19.
Schistosoma japonicum infection can induce granulomatous inflammation and cause tissue damage in the mouse liver. The cytokine secretion profile of T helper (Th) cells depends on both the nature of the activating stimulus and the local microenvironment (e.g. cytokines and other soluble factors). In the present study, we found an accumulation of large numbers of IFN‐γ+ IL‐4+ CD4+ T cells in mouse livers. This IFN‐γ+ IL‐4+ cell population increased from 0·68 ± 0·57% in uninfected mice to 7·05 ± 3·0% by week 4 following infection and to 9·6 ± 5·28% by week 6, before decreasing to 6·3 ± 5·9% by week 8 in CD4 T cells. Moreover, IFN‐γ+ IL‐4+ Th cells were also found in mouse spleen and mesenteric lymph nodes 6 weeks after infection. The majority of the IFN‐γ+ IL‐4+ Th cells were thought to be related to a state of immune activation, and some were memory T cells. Moreover, we found that these S. japonicum infection‐induced IFN‐γ+ IL‐4+ cells could express interleukin‐2 (IL‐2), IL‐9, IL‐17 and high IL‐10 levels at 6 weeks after S. japonicum infection. Taken together, our data suggest the existence of a population of IFN‐γ+ IL‐4+ plasticity effector/memory Th cells following S. japonicum infection in C57BL/6 mice.  相似文献   

20.
In the ectopic lymphoid‐like structures present in chronic inflammatory conditions such as rheumatoid arthritis, a subset of human effector memory CD4+ T cells that lacks features of follicular helper T (Tfh) cells produces CXCL13. Here, we report that TGF‐β induces the differentiation of human CXCL13‐producing CD4+ T cells from naïve CD4+ T cells. The TGF‐β‐induced CXCL13‐producing CD4+ T cells do not express CXCR5, B‐cell lymphoma 6 (BCL6), and other Tfh‐cell markers. Furthermore, expression levels of CD25 (IL‐2Rα) in CXCL13‐producing CD4+ T cells are significantly lower than those in FoxP3+ in vitro induced Treg cells. Consistent with this, neutralization of IL‐2 and knockdown of STAT5 clearly upregulate CXCL13 production by CD4+ T cells, while downregulating the expression of FoxP3. Furthermore, overexpression of FoxP3 in naïve CD4+ T cells downregulates CXCL13 production, and knockdown of FoxP3 fails to inhibit the differentiation of CXCL13‐producing CD4+ T cells. As reported in rheumatoid arthritis, proinflammatory cytokines enhance secondary CXCL13 production from reactivated CXCL13‐producing CD4+ T cells. Our findings demonstrate that CXCL13‐producing CD4+ T cells lacking Tfh‐cell features differentiate via TGF‐β signaling but not via FoxP3, and exert their function in IL‐2‐limited but TGF‐β‐rich and proinflammatory cytokine‐rich inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号