首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is associated with chronic low‐grade inflammation of the adipose tissue (AT) that might develop into systemic inflammation, insulin resistance (IR) and an increased risk of type 2 diabetes mellitus (T2DM) in severe obese rodents and humans. In the lean state, small normal adipocytes and AT macrophages interact with each other to maintain metabolic homeostasis but during obesity, enlarged adipocytes secrete inflammatory mediators and express immune receptors to recruit immune cells and aggravate the inflammation. The better understanding of the obesity‐related inflammatory milieu and the sequential events leading to IR could be helpful in designing new preventive and therapeutic strategies. The present review will discuss the cellular and molecular abnormalities participating in the pathogenesis of obesity in obese individuals as well as high‐fat diet (HFD)‐fed mice, a mouse model of obesity.  相似文献   

2.
Visceral adipose tissue inflammation in obesity is an established risk factor for metabolic syndrome, which can include insulin resistance, type 2 diabetes, hypertension and cardiovascular diseases. With obesity and related metabolic disorders reaching epidemic proportions globally, an understanding of the mechanisms of adipose tissue inflammation is crucial. Within the immune cell cohort, dendritic cells (DC) play a key role in balancing tolerance and immunity. Despite decades of research into the characterization of DC in lymphoid and non‐lymphoid organs, their role in adipose tissue function is poorly understood. There is now an increasing interest in identification and characterization of DC in adipose tissue and understanding their function in regulating tissue metabolic homeostasis. This review provides an overview of the study of DC in adipose tissue, focusing on possible mechanisms by which DC may contribute to adipose tissue homeostasis.  相似文献   

3.
Obesity is associated with the accumulation of pro‐inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro‐inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL‐4, IL‐5, and IL‐13, which keep adipose tissue macrophages (ATMs) in an anti‐inflammatory, M2‐like state. Diet‐induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN‐γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity‐induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8+ T cells, which produce IFN‐γ, driving M1 ATM polarization. A rapid accumulation of pro‐inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity‐induced loss of homeostasis which marks the initiation of VAT inflammation.  相似文献   

4.
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.  相似文献   

5.
《Mucosal immunology》2022,15(6):1158-1169
Immunological memory of innate immune cells, also termed “trained immunity”, allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.  相似文献   

6.
Type 2 immune responses play key roles in protection against parasitic worm infections, whole‐body metabolic homeostasis, wound healing, and the development of allergies. As a result, there is considerable interest in understanding the pathways that regulate type 2 immunity in order to identify strategies of targeting and controlling these responses. In recent years, it has become increasingly clear that the functional properties of immune cells, including those involved in type 2 immune responses, are dependent on the engagement of specific metabolic pathways such as aerobic glycolysis and fatty acid oxidation (FAO). We here discuss the latest insights in the metabolic regulation of immune cells that initiate type 2 immune responses, such as dendritic cells and innate lymphoid cells, as well as immune cells involved in the effector phase, like T helper 2 (Th2) cells, B cells and alternatively activated macrophages (M2 macrophages). Finally, we consider whether these findings may provide new prospects for the treatment of type 2 immune response‐associated diseases.  相似文献   

7.
8.
The major role of cells of the dendritic family in immunity and tolerance has been amply documented. Since their discovery in 1973, these cells have gained increasing interest from immunologists, as they are able to detect infectious agents, migrate to secondary lymphoid tissue, and prime naive T lymphocytes, thereby driving immune responses. Surprisingly, they can also have the opposite function, that is, preventing immune responses, as they are involved in central and peripheral tolerance. Most dendritic cells (DCs) derive from a common precursor and do not arise from monocytes and are considered “conventional” DCs. However, a new population of DCs, namely “inflammat‐ory” DCs, has recently been identified, which is not present in the steady state but differentiates from monocytes during infection/inflammation. In this review, we summarize the role of these “inflammatory” DCs in innate and adaptive immunity.  相似文献   

9.
Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases.  相似文献   

10.
脂肪组织可分为白色脂肪组织(white adipose tissue,WAT)与棕色脂肪组织(brown adipose tissue, BAT).WAT行使能量储存功能,将人体多余的能量以化学能形式储存,而BAT则具有产热功能,在寒冷等刺激下将化学能转化为热能,以维持体温.脂肪组织同时还具有内分泌功能,可分泌多种激素...  相似文献   

11.
Interleukin (IL)‐33, a member of the IL‐1 family, was originally described in 2005 as a potent initiator of type 2 immunity found during allergic inflammation and parasitic infections. IL‐33 has been shown to play important and potent roles bridging innate and adaptive immunity in the regulation of tissue homeostasis, injury, and repair. Recent discoveries have extended the range of functions for IL‐33 beyond type 2 conditions and its role as an alarmin at barrier sites, with emerging central roles for IL‐33 in T‐cell regulation, obesity, viral and tumor immunity. Here, we review the recent advances on how IL‐33 activity is regulated, its immunomodulatory properties on innate and adaptive cells, and the newly discovered roles of IL‐33 in obesity, intestinal inflammation, and tumorigenesis.  相似文献   

12.
Lydia Lynch 《Immunology》2014,142(3):337-346
Adipose tissue is a dynamic organ that makes up a substantial proportion of the body; in severe obesity it can account for 50% of body mass. Details of the unique immune system resident in human and murine adipose tissue are only recently emerging, and so it has remained a largely unexplored and unappreciated immune site until now. Adipose tissue harbours a unique collection of immune cells, which often display unusual functions compared with their counterparts elsewhere in the body. These resident immune cells are key to maintaining tissue and immune homeostasis, yet in obesity their chronic aberrant stimulation can contribute to the inflammation and pathogenesis associated with obesity. Anti‐inflammatory adipose‐resident lymphocytes are often depleted in obesity, whereas pro‐inflammatory immune cells accumulate, leading to an overall inflammatory state, which is a key step in the development of obesity‐induced metabolic disease. A good example is invariant natural killer T (iNKT) cells, which make up a large proportion of lymphocytes in human and murine adipose tissue. Here, they are unusually poised to produce anti‐inflammatory or regulatory cytokines, however in obesity, iNKT cells are greatly reduced. As iNKT cells are potent transactivaors of other immune cells, and can act as a bridge between innate and adaptive immunity, their loss in obesity represents the loss of a major regulatory population. Restoring iNKT cells, or activating them in obese mice leads to improved glucose handling, insulin sensitivity, and even weight loss, and hence represents an exciting therapeutic avenue to be explored for restoring homeostasis in obese adipose tissue.  相似文献   

13.
Since their discovery three decades ago, NK cells have been classified as cells of the innate immune system. NK cells were shown to respond rapidly and non‐specifically to infection, and were thought to act as a functional “bridge” to sustain the early innate immune response until the later adaptive immune responses could be mounted. In light of new findings showing how NK cells possess nearly all of the features of adaptive immunity including memory, we propose the placement of NK cells as an “evolutionary bridge” between innate and adaptive immunity.  相似文献   

14.
N. Sharma  M. Akkoyunlu  R. L. Rabin 《Allergy》2018,73(6):1196-1205
Macrophages are essential innate immune cells that also regulate local metabolism. Endogenous or exogenous stimuli may polarize macrophages toward phenotypes that serve distinct innate immunological metabolic functions. IFN‐γ or lipopolysaccharide (LPS) polarizes macrophages toward the M1, or “classically activated” phenotype that participates in defense against intracellular pathogens. IL‐4, IL‐13, or chitin polarizes macrophages toward the M2, or “alternatively activated” phenotype, which defends against multicellular nematodes and fungi. As macrophages polarize in local environments, M1 and M2 macrophages may coexist in different organs and may differentially affect asthma and obesity, two comorbid diseases where polarized macrophages contribute to their pathogenesis. While M1 macrophages are considered beneficial in asthma and contribute to the pathology of obesity, M2 macrophages contribute to the pathology of asthma, but limit metabolic syndrome associated with obesity. Here, we discuss the roles for M1 and M2 macrophages in asthma and obesity, and propose a model by which M1‐mediated inflammation in adipose tissue enhances M2‐mediated inflammation in the asthmatic lung.  相似文献   

15.
The immune and endocrine systems ensure two vital functions in the body. The immune system protects us from lethal pathogens, whereas the endocrine system ensures proper metabolic function of peripheral organs by regulating systemic homeostasis. These two systems were long thought to operate independently. The immune system uses cytokines and immune receptors, whereas the endocrine system uses hormones to regulate metabolism. However, recent findings show that the immune and endocrine systems closely interact, especially regarding regulation of glucose metabolism. In response to pathogen encounter, cytokines modify responsiveness of peripheral organs to endocrine signals, resulting in altered levels of blood hormones such as insulin, which promotes the ability of the body to fight infection. Here we provide an overview of recent literature describing various mechanisms, which the immune system utilizes to modify endocrine regulation of systemic metabolism. Moreover, we will describe how these immune–endocrine interactions derail in the context of obesity. From a clinical perspective we will elaborate how infection and obesity aggravate the development of metabolic diseases such as diabetes mellitus type 2 in humans. In summary, this review provides a comprehensive overview of immune‐induced changes in systemic metabolism following infection, with a focus on regulation of glucose metabolism.  相似文献   

16.
Obesity‐associated visceral adipose tissue (AT) inflammation promotes insulin resistance and type 2 diabetes (T2D). In mice, lean visceral AT is populated with anti‐inflammatory cells, notably regulatory T cells (Tregs) expressing the IL‐33 receptor ST2. Conversely, obese AT contains fewer Tregs and more proinflammatory cells. In humans, however, there is limited evidence for a similar pattern of obesity‐associated immunomodulation. We used flow cytometry and mRNA quantification to characterize human omental AT in 29 obese subjects, 18 of whom had T2D. Patients with T2D had increased proportions of inflammatory cells, including M1 macrophages, with positive correlations to body mass index. In contrast, Treg frequencies negatively correlated to body mass index but were comparable between T2D and non‐T2D individuals. Compared to human thymic Tregs, omental AT Tregs expressed similar levels of FOXP3, CD25, IKZF2, and CTLA4, but higher levels of PPARG, CCR4, PRDM1, and CXCL2. ST2, however, was not detectable on omental AT Tregs from lean or obese subjects. This is the first comprehensive investigation into how omental AT immunity changes with obesity and T2D in humans, revealing important similarities and differences to paradigms in mice. These data increase our understanding of how pathways of immune regulation could be targeted to ameliorate AT inflammation in humans.  相似文献   

17.
Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called “crown-like structure”, a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.  相似文献   

18.
Obesity and type 2 diabetes have become the major health problems in many industrialized countries. Here, I present the unconventional concept that a healthy organism maintains its systemic homeostasis by a “competent brain‐pull”, i.e., the brain's ability to properly demand glucose from the body, and that the underlying cause of obesity is “incompetent brain‐pull.” I describe the energy fluxes from the environment, through the body, toward the brain as the final consumer in a “supply chain” model. There is data‐based support for the hypothesis, which states that under conditions of food abundance incompetent brain‐pull will lead to build ups in the supply chain culminating in obesity and type 2 diabetes. There is also support for the related hypothesis, which states that under conditions of food deprivation, a competent brain‐pull mechanism is indispensable for the continuation of the brain's high energy level. To experimentally determine how the competent brain‐pull functions to demand for cerebral energy, healthy young men undergoing psychosocial stress were studied. It was found that the brain under stressful conditions demands for energy from the body by using a brain‐pull mechanism, which is referred to as “cerebral insulin suppression” and in so doing it can satisfy its excessive needs during stress. This article gives an overview about the recent work on the “Selfish Brain” theory dealing with the maintenance of the cerebral and peripheral energy homeostasis. Am. J. Hum. Biol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
One decade has passed since seminal publications described macrophage infiltration into adipose tissue (AT) as a key contributor to inflammation and obesity-related insulin resistance. Currently, a PubMed search for ‘adipose tissue inflammation’ reveals over 3500 entries since these original reports. We now know that resident macrophages in lean AT are alternatively activated, M2-like, and play a role in AT homeostasis. In contrast, the macrophages in obese AT are dramatically increased in number and are predominantly classically activated, M1-like, and promote inflammation and insulin resistance. Mediators of AT macrophage (ATM) phenotype include adipokines and fatty acids secreted from adipocytes as well as cytokines secreted from other immune cells in AT. There are several mechanisms that could explain the large increase in ATMs in obesity. These include recruitment-dependent mechanisms such as adipocyte death, chemokine release, and lipolysis of fatty acids. Newer evidence also points to recruitment-independent mechanisms such as impaired apoptosis, increased proliferation, and decreased egress. Although less is known about the homeostatic function of M2-like resident ATMs, recent evidence suggests roles in AT expansion, thermoregulation, antigen presentation, and iron homeostasis. The field of immunometabolism has come a long way in the past decade, and many exciting new discoveries are bound to be made in the coming years that will expand our understanding of how AT stands at the junction of immune and metabolic co-regulation.  相似文献   

20.
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that – beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号