首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose. To investigate the transport mechanism of valproic acid across the human placenta, we used human placental brush-border membrane vesicles and compared them with that of lactic acid. Methods. Transport of [3H]valproic acid and [14C]lactic acid was measured by using human placental brush-border membrane vesicles. Results. The uptakes of [3H]valproic acid and [14C]lactic acid into brush-border membrane vesicles were greatly stimulated at acidic extravesicular pH. The uptakes of [3H]valproic acid and [14C]lactic acid were inhibited by various fatty acids, p-chloromercuribenzene sulfonate, -cyano-4-hydroxycinnamate, and FCCP. A kinetic analysis showed that it was saturable, with Michaelis constants (Kt) of 1.04 ± 0.41 mM and 1.71 ± 0.33 mM for [3H]valproic acid and [14C]lactic acid, respectively. Furthermore, lactic acid competitively inhibited [3H]valproic acid uptake and vice versa. Conclusion. These results suggest that the transport of valproic acid across the microvillous membrane of human placenta is mediated by a proton-linked transport system that also transports lactic acid. However, some inhibitors differentially inhibited the uptakes of [3H]valproic acid and [14C]lactic acid, suggesting that other transport systems may also contribute to the elevated fetal blood concentration of valproic acid in gravida.  相似文献   

2.
The biochemical mechanisms mediating the rapid distribution of valproic acid across placenta are not precisely known. We have characterized valproic acid transport by the human trophoblast using the human choriocarcinoma cell line, BeWo. The uptake of [14C]valproic acid by BeWo cells was found to be saturable and blocked by pre-exposure to the metabolic inhibitors, sodium azide and 2,4-dinitrophenol. Valproic acid uptake by the BeWo cells was also inhibited by the protonophore, carbonylcyanide p-trifluoromethoxyphenylhydrazone, but not anion exchange inhibitor. Selected monocarboxylic acids inhibited the uptake of [14C]valproic acid by BeWo cells, whereas dicarboxylic acids did not alter the uptake process. Analysis of Lineweaver-Burk plots of valproic acid uptake in the presence of benzoic acid, a marker for the monocarboxylic acid transporter, revealed a competitive process for uptake. In transcellular transport experiments, the permeation of [14C]valproic acid from the apical-to-basal side of the monolayers was significantly greater than the permeation from basal-to-apical side. Additionally, the permeation of [14C]valproic acid from apical-to-basal side was inhibited by monocarboxylic acids and not dicarboxylic acids. The results provide biochemical evidence of a proton-dependent, saturable, and asymmetric transport system, presumed to be a monocarboxylic acid transporter, for valproic acid in a human trophoblast model.  相似文献   

3.
To elucidate the role of P-glycoprotein in human placenta, we examined its expression in placenta, and the transcellular transport and uptake of P-glycoprotein substrates in cultured human placental choriocarcinoma epithelial cells (BeWo cells). The uptake of [(3)H]vinblastine and [(3)H]vincristine into BeWo cells was increased in the presence of a metabolic inhibitor, sodium azide. The basolateral-to-apical transcellular transport of [(3)H]vinblastine, [(3)H]vincristine and [(3)H]digoxin was greater than the apical-to-basolateral transcellular transport. In the presence of cyclosporin A, the basolateral-to-apical transcellular transport of [(3)H]vinblastine, [(3)H]vincristine and [(3)H]digoxin was significantly increased, and the apical-to-basolateral transcellular transport was decreased. The uptake of [(3)H]vinblastine, [(3)H]vincristine and [(3)H]digoxin into BeWo cells was significantly enhanced in the presence of several inhibitors, such as verapamil or mouse monoclonal antibody anti-P-glycoprotein MX-MDR (MRK16) as well as cyclosporin A. Although progesterone significantly enhanced the uptake of [(3)H]vinblastine, [(3)H]vincristine and [(3)H]digoxin into BeWo cells, the uptake of [(3)H]progesterone was not affected by these inhibitors. Immunoblot analysis revealed that P-glycoprotein with a molecular weight of 172 kDa was expressed in BeWo cells and isolated trophoblast cells. Furthermore, P-glycoprotein was detected in human placental brush-border membrane vesicles, but not in human placental basolateral membrane vesicles. In conclusion, these data suggest that P-glycoprotein is expressed on the brush-border membrane (maternal side) of human placental trophoblast cells. P-Glycoprotein is considered to regulate the transfer of several substances including vinblastine, vincristine and digoxin from mother to fetus, and to protect the fetus from toxic substances.  相似文献   

4.
Fluorouracil is used for treatment of breast cancer even in pregnant women, except during fetal organogenesis. The purpose of this study was to clarify the transport mechanism of fluorouracil at the rat placental barrier. Maternal-to-fetal transfer of [3H]fluorouracil in rats at gestational day 19.5 was saturable and much higher than that of [14C]sucrose. The uptake of [3H]fluorouracil was also saturable in rat placental trophoblast TR-TBT 18d-1 cells, which express both equilibrative nucleoside transporter (ENT) 1 and ENT2. Nitrobenzylthioinosine (NBMPR) at 0.1 μM had no effect on [3H]fluorouracil uptake by TR-TBT 18d-1 cells, but 100 μM NBMPR almost completely inhibited the saturable component, suggesting involvement of ENT2, rather than ENT1 in the transport. Rat ENT2 cRNA-injected oocytes showed significantly increased [3H]fluorouracil uptake compared with water-injected oocytes, while rat ENT1 cRNA-injected oocytes did not show an increase of [3H]fluorouracil uptake. The Michaelis–Menten constant for rat ENT2-mediated uptake of [3H]fluorouracil was 4.21 mM. The expression profile of ENT2 mRNA in rat placenta during pregnancy was almost constant from 13.5 to 21.5 days of gestation. In conclusion, ENT2 appears to be the mediator of fluorouracil transport in rat placental trophoblast cells.  相似文献   

5.
The purpose of this study was to investigate the transport mechanism of tolbutamide across the blood-brain barrier (BBB) using MBEC4 cells as an in vitro BBB model. METHODS: The BBB transport of tolbutamide was studied by using a mouse brain capillary endothelial cell line, MBEC4, cultured on dishes with their luminal membrane facing the culture medium. RESULTS: The uptake of [14C]tolbutamide by MBEC4 cells was dependent on temperature and energy. The uptake coefficient of [14C]tolbutamide increased markedly with decreasing pH of the external medium from neutral to acidic. Valinomycin and replacement of chloride with sulfate or gluconate significantly increased the initial uptake of [14C]tolbutamide, while replacement with nitrate significantly decreased it. The uptake was significantly reduced by a proton ionophore, FCCP, and an anion-exchange inhibitor, DIDS. The initial uptake of [14C]tolbutamide was saturable with Kt of 0.61+/-0.03 mM (pH 7.4) and 1.76+/-0.19 mM (pH 6.5). At pH 6.5, the initial uptake of [14C]tolbutamide was significantly reduced by several sulfa drugs, salicylic acid, valproic acid and probenecid, and was competitively inhibited by sulfaphenazole (Ki=3.47+/-0.50 mM) and valproic acid (Ki=2.29+/-0.43 mM). CONCLUSION: These observations indicate the existence of a pH- and membrane-potential-dependent anion exchange and/or proton-cotransport system(s) for concentrative uptake of tolbutamide and sulfa drugs in MBEC4 cells.  相似文献   

6.
Abstract— Intestinal absorption of the orally active cephalosporin, cefdinir, was investigated using brush-border membrane vesicles prepared from rabbit small intestine. The initial uptake of cefdinir was pH-dependent, with increased uptake at acidic pH, and was not influenced by either sodium gradient or membrane potential difference. Cefdinir uptake was saturable with an apparent Michaelis constant of 8·1 Mm . Initial uptake of cefdinir was inhibited by dipeptides (glycyl-l -proline and glycylsarcosine), β-lactam antibiotics (cephradine, cefixime and penicillin V), and monocarboxylic acids (acetic acid and l -lactic acid), whereas the uptake of cephradine and cefixime was not inhibited by monocarboxylic acids. Cefdinir significantly inhibited the initial uptake of cephradine, cefixime and [3H]acetic acid. From these results, it was suggested that cefdinir was transported across brush-border membranes by both dipeptide and monocarboxylic acid carriers.  相似文献   

7.
Intestinal brush-border membrane transport of monocarboxylic acids was investigated by using rabbit intestinal brush-border membrane vesicles (BBMVs) and isolated intestinal tissues mounted on Ussing-type chambers. [3H]Mevalonic acid uptake by BBMVs showed an overshoot phenomenon in the presence of an inwardly directed proton gradient, but not in the presence of an inwardly directed sodium gradient or an outwardly directed HCO3? or chloride gradient. Initial uptake of mevalonic acid was saturable in the presence of a proton gradient. Uptake of [3H]mevalonic acid was inhibited by various monocarboxylic acids, including acetic acid, benzoic acid, lactic acid, nicotinic acid, pravastatin, salicylic acid and valproic acid, but not by dicarboxylic acid or amino acids. Acetic acid, which is transported by both anion antiport and proton-coupled transport systems, induced serosal bicarbonate-dependent alkalinization in the mucosal-side bathing solution of rabbit jejunal tissues, when examined in Ussing-type chambers. Pravastatin, which is a structural analogue of mevalonic acid and is absorbed via proton-coupled transport like mevalonic acid, did not. The result demonstrates that acetic acid is transported by the bicarbonate-dependent anion antiport system, whereas pravastatin is not. So, it is suggested that monocarboxylic acids are transported by at least two independent transporters, namely, a proton-coupled transporter for most monocarboxylic acids, including mevalonic acid, pravastatin and acetic acid, and an anion antiporter for acetic acid, but not for mevalonic acid or pravastatin. Activation of anion antiporter can induce HCO3? secretion in intact intestine.  相似文献   

8.
The aim of this study was to characterize the transport of organic cations at the intestinal level, by studying the characteristics of the transport of 1-methyl-4-phenylpyridinium (MPP+) in Caco-2 cells. Transepithelial flux as well as cellular accumulation of [3H]MPP+ were quantitatively similar when substrate was applied from the basolateral or apical cell membrane. Verapamil (100 microM) and rhodamine123 (10 microM) significantly reduced [3H]MPP+ transepithelial flux in the apical-to-basolateral direction. When cells were grown on plastic supports, [3H]MPP+ was rapidly accumulated in the cells, both by saturable and nonsaturable mechanisms. The kinetic parameters of the saturable component were: Km: 449 microM and Vmax: 2,249 pmol per mg protein and 5 min. Uptake of [3H]MPP+ was metabolic energy-dependent and Na+-, pH- and potential-independent. It was inhibited by several organic cations (verapamil, rhodamine123, daunomycin, vinblastine, tetrabutylammonium and vecuronium) but not by others (tetraethylammonium and N-methylnicotinamide). Decynium22 and corticosterone inhibited [3H]MPP+ uptake into the cells. The P-glycoprotein antibody UIC2 (20 microg/ml) had no effect. In conclusion, [3H]MPP+ is efficiently transported by Caco-2 cells in both basolateral-to-apical (secretion) and apical-to-basolateral (absorption) directions. Absorption of [3H]MPP+ at the apical membrane seems to occur through a carrier-mediated mechanism belonging to the Amphiphilic Solute Facilitator (ASF) family of transporters, but distinct from the known members of this family.  相似文献   

9.
Ursodeoxycholic acid (UDCA) is a first‐line drug to treat intrahepatic cholestasis of pregnancy (ICP). However, its effects on the fetus are not clearly known. To better guide its clinical use, we aimed to study the mechanism underlying the placental transport of UDCA. The uptake and efflux of UDCA across placental apical membranes were studied using BeWo cells; effects of different exposure durations, UDCA concentrations, temperatures, and inhibitors of transporters were studied. A transwell assay was performed, and UDCA concentration in both fetal and maternal sides was measured using LC–MS/MS. Higher unidirectional transport of UDCA was observed in the basolateral‐to‐apical direction than in the apical‐to‐basolateral direction. Ko143 and verapamil, which are typical inhibitors of efflux transporters, significantly increased UDCA transport from different directions. UDCA uptake from the apical membrane of BeWo cells was time‐dependent, but sodium‐independent. It was inhibited by inhibitors of energy metabolism and of organic anion transporters, indicating an active transport mechanism. UDCA uptake from the apical membranes of BeWo cells could be mediated by organic anion‐transporting polypeptides, whereas its efflux could be mediated by breast cancer resistance protein and multidrug resistant protein 3. The results of the present study may provide a basis for UDCA use in pregnancy.  相似文献   

10.
Proton-Cotransport of Pravastatin Across Intestinal Brush-Border Membrane   总被引:2,自引:0,他引:2  
Tamai  Ikumi  Takanaga  Hitomi  Maeda  Hiroshi  Ogihara  Takuo  Yoneda  Masaru  Tsuji  Akira 《Pharmaceutical research》1995,12(11):1727-1732
Purpose. The purpose of the present study is to clarify the intestinal brush-border transport mechanism of a weak organic acid, pravastatin, an HMG-CoA reductase inhibitor. Methods. The transport of pravastatin was studied by using intestinal brush-border membrane vesicles prepared from rabbit jejunum, and uptake by the membrane vesicles was measured using rapid filtration technique. Results. The initial uptake of [14C]pravastatin was markedly increased with decreases in extravesicular pH and showed a clear overshoot phenomenon in the presence of a proton gradient (pHin/out = 7.5/5.5). A protonophore, carbonylcyanide p-trifluoromethoxyphenylhydrazone, significantly reduced the uptake of [14C]pravastatin. In addition, an ionophore for sodium, potassium and proton, nigericin, stimulated the uptake of [14C]pravastatin in the presence of a potassium gradient ([K + ]in/[K+ ]out = 0/145 mM). On the other hand, neither the imposition of an inwardly directed sodium gradient nor an outwardly directed bicarbonate gradient stimulated the uptake of [14C]pravastatin. In the presence of a proton gradient (pHin/out = 7.5/5.5), the initial uptake of pravastatin was saturable with the apparent Kt of 15.2 ± 3.2 mM and Jmax of 10.6 ± 1.21 nmol/mg protein/10 sec. The uptake of pravastatin was significantly inhibited by monocarboxylic acid compounds such as acetic acid and nicotinic acid in a competitive manner but not by di- or tri-carboxylic acids, or acidic amino acid. Conclusions. It was concluded that a pH-dependent transport of pravastatin across the brush-border membrane occurs by a proton-gradient dependent carrier-mediated mechanism rather than by simple diffusion of its unionized form.  相似文献   

11.
The monolayer-forming, human choriocarcinoma cell line, BeWo, was used to study the mechanisms of monocarboxylic acid transport across the human trophoblast. Benzoic acid, acetic acid, and lactic acid were used as markers for monocarboxylic acid carrier-mediated transport. The uptake of benzoic acid by BeWo cells was saturable (K(t) = 0.6 +/- 0.3 mM) at higher concentrations and significantly inhibited by typical metabolic inhibitors, sodium azide and 2, 4-dinitrophenol. A selection of different monocarboxylic acids, including a natural substrate lactic acid, also substantially inhibited the uptake of benzoic acid and acetic acid by BeWo cells, whereas dicarboxylic acids did not affect the uptake of either marker. Monocarboxylic acid uptake was pH-dependent and inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a protonophore. Kinetic analysis using Lineweaver-Burk plots revealed that monocarboxylic acids competitively inhibited the uptake of benzoic, lactic, and acetic acid by BeWo cells. In transport experiments, the permeation of benzoic acid from apical-to-basolateral side was greater than the permeation from the basolateral-to-apical side, and the transport of benzoic acid from apical-to-basolateral side was inhibited by monocarboxylic acids. The findings obtained in the present study confirm the existence of an asymmetric, carrier-mediated transport system for monocarboxylic acids across the BeWo cell, a representative of the human trophoblast.  相似文献   

12.
The participation of the monocarboxylic acid transporter MCT1 in the intestinal absorption of weak organic acids has been clarified by functional characterization, by use of stably transfected cells, and by immunohistochemical location of the transporter in intestinal tissues. Immunohistochemical analysis by use of the anti-MCT1 antibody showed that MCT1 is distributed throughout the upper and lower intestines, especially in the basolateral membrane and, to a lesser extent, in the brush-border membrane. When the transporter gene rat MCT1 was transfected into MDA-MB231 cells, transport of benzoic acid, a model weak organic acid that has been generally believed to be transported across the cell membranes by passive diffusion, and lactic acid in rat MCT1-transfected cells was significantly increased compared with transport in cells transfected with the expression vector pRc-CMV alone (mock cells). The observed transport was pH-dependent and activity increased between pH 7.5 and pH 5.5, whereas pH-dependence in mock cells was moderate. Rat MCT1-mediated benzoic acid uptake was saturable, with an apparent Km value of 3.05 mM. In addition, MCT1 increased the efflux of [14C]benzoic acid from the cells. Several weak organic acids were also transported by rat MCT1. These results show that pH-dependent intestinal absorption of weak organic acids, previously explained in terms of passive diffusion according to the pH-partition hypothesis, is at least partially accounted for by MCT1-mediated transport energized at acidic pH by utilization of the proton gradient as a driving force.  相似文献   

13.
14.
Aminoglycosides (AG) are known to readily cross the placenta, although the mechanisms responsible for placental transport have not been characterized. Megalin is expressed in human placenta, and it is reasonable to speculate, given its role in renal AG uptake, that it is similarly involved in placental transport. However, the role of megalin in placental AG uptake has not been established. An in vitro model to study megalin-mediated placental transport has also not been previously described. The objectives of this study, therefore, were to evaluate the human choriocarcinoma (BeWo) cell line as a model to study megalin-mediated placental transport and to assess the uptake kinetics of gentamicin, an AG antibiotic, using this in vitro model. BeWo cells were grown on Transwell® plates, and megalin expression and functional activity were assessed. Uptake of 3H-gentamicin was also evaluated in the presence and absence of megalin inhibitors. Expression of megalin protein and mRNA in BeWo cells were confirmed via immunoblot and qPCR analysis. Uptake of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) (a megalin substrate) was time-, concentration-, and temperature-dependent consistent with a transporter-mediated process. FITC-BSA uptake was also significantly reduced in the presence of unlabeled gentamicin (a megalin substrate) and sodium maleate (to induce megalin shedding) suggesting that megalin is functionally active in BeWo cells. Gentamicin uptake exhibited time and temperature dependence, saturability and Michaelis-Menten kinetics, all of which suggest a transporter-mediated process. Gentamicin uptake was also significantly reduced in the presence of the megalin inhibitors RAP and EDTA suggesting that megalin is likely involved in gentamicin uptake.KEY WORDS: aminoglycosides, gentamicin, megalin, placenta, receptor-mediated endocytosis  相似文献   

15.
16.
The delta opioid receptor antagonist [D-penicillamine2,5]enkephalin (DPDPE) is an enzymatically stable peptide analogue of Met-enkephalin. DPDPE uses a saturable transport mechanism to cross the blood-brain barrier (BBB), though the exact mechanism is not fully understood. The aim of the present study was to identify the mechanism by which DPDPE enters the brain. The effect of phenylarsine oxide (PAO), an endocytosis inhibitor, on the transport of [3H]DPDPE was investigated using both in vitro and in situ transport studies. Two in vitro models of the BBB utilizing primary bovine brain microvascular endothelial cells (BBMEC) were studied. [3H]DPDPE permeability across monolayers of BBMEC grown on polycarbonate filters was studied. PAO significantly reduced the permeability of [3H]DPDPE across the monolayer. PAO also reduced the uptake of [3H]DPDPE into BBMEC cells, without affecting binding to the cells. The in situ perfusion model of the BBB was also studied, PAO reduced DPDPE uptake by the brain in a dose-dependent manner. These studies indicate that DPDPE enters the brain via an energy-dependent transcytotic mechanism.  相似文献   

17.
18.
The aims of this study are to quantify the protein levels of nucleoside transporters in placental microvillous membranes (MVMs) and to clarify the contributions of these transporters to ribavirin uptake at the placental barrier. Placental MVMs of human and rat expressed equilibrative nucleoside transporter (ENT) 1 protein, whereas the expression of ENT2 protein was obscure. Maternal-to-fetal transfer of [3H]ribavirin in rats was much higher than that of [14C]sucrose. The uptake of [3H]ribavirin by rat placental trophoblast TR-TBT 18 d-1 cells, which functionally express both ENT1 and ENT2 proteins, was saturable, and was significantly inhibited by 0.1 μM nitrobenzylthioinosine, which selectively abolishes ENT1-mediated uptake. Dipyridamole at 10 μM is capable of inhibiting ENT2 as well as ENT1, but a degree of inhibition by 10 μM dipyridamole on [3H]ribavirin uptake was not much different from that by 0.1 μM nitrobenzylthioinosine (ENT1-specific inhibitor). Therefore, ENT2 may contribute little to [3H]ribavirin uptake by these cells. Rat ENT1 cRNA-injected oocytes showed increased [3H]ribavirin uptake compared with water-injected oocytes, while rat ENT2 cRNA-injected oocytes did not. In conclusion, ENT1 protein expressed in placental MVMs appears to play a predominant role in the uptake of ribavirin.  相似文献   

19.
Purpose. P-Glycoprotein (Pgp) plays an important role in drug disposition and excretion in various tissues such as the brain, intestine, and kidney. Moreover, we have demonstrated that Pgp is expressed on the brush-border membranes of trophoblast cells in the placenta and restricts drug transfer from the maternal circulation to the fetus. However, the transport kinetics of physiologically expressed Pgp has scarcely been investigated. Methods. In this study, we assessed the functional kinetics of transport mediated by Pgp that is physiologically expressed in normal tissue by using human placental brush-border membrane vesicles (BBMVs). Digoxin and vinblastine were used as typical substrates of Pgp. Results. The uptakes of [3H]digoxin and [3H]vinblastine into BBMVs were significantly increased in the presence of an ATP-regenerating system. The ATP-dependent uptakes of [3H]digoxin and [3H]vinblastine into BBMVs exhibited saturable kinetics. The Michaelis constants (K t values) were 2.65 ± 1.80 M and 21.9 ± 3.37 M, respectively. In the presence of a Pgp inhibitor such as verapamil, cyclosporine A, or progesterone, the ATP-dependent uptakes of [3H]digoxin and [3H]vinblastine into BBMVs were significantly reduced. Anti-Pgp monoclonal antibody C219 completely inhibited the uptake of [3H]digoxin. Conclusions. The transport kinetics of [3H]digoxin and [3H]vinblastine by physiologically expressed Pgp were successfully evaluated by using BBMVs prepared from normal human placenta. The present method enabled us to evaluate the function of physiologically expressed Pgp and is superior to the use of cultured transfectants in terms of the yield of vesicles. The present method may also be applicable to investigating the influence of various factors such as the genotype of the MDR1 gene or various pathophysiologic states of neonates on the function of Pgp.  相似文献   

20.
In order to determine whether the vitamin nicotinic acid is absorbed via an anion antiporter, intestinal epithelial cell membrane transport mechanisms for nicotinic acid were characterized using isolated rabbit jejunal brush-border membrane vesicles. The uptake of nicotinic acid by the membrane vesicles showed an overshoot phenomenon in the presence of an outwardly directed bicarbonate gradient or an inwardly directed proton gradient and the uptakes were two times and six times greater, respectively, than that in the absence of any ion gradient. The bicarbonate-dependent initial uptake of nicotinic acid was increased at acidic pH, showing pH-dependent transport activity. An inhibitor of anion transport, 4,4′-diisothiocyanostilbene-2,2′-disulphonic acid, specifically reduced bicarbonate-dependent transport of nicotinic acid. The initial uptakes of nicotinic acid via the anion antiporter and the proton cotransporter were specifically inhibited by monocarboxylic acids such as acetic acid, benzoic acid, D- and L-lactic acid, pravastatin and valproic acid, but not by di- or tricarboxylic acids, bile acids or amino acids. Nicotinic acid uptake activity was, furthermore, expressed in a Xenopus laevis oocyte system after injection of messenger RNA (mRNA) derived from rabbit intestinal epithelial cells. These observations demonstrate that nicotinic acid is absorbed by two independent active transport mechanisms from small intestine, i.e. a proton cotransporter and an anion antiporter. The pH-dependence observed in the intestinal absorption of nicotinic acid might, therefore, be ascribed partly to pH-sensitive and partly to carrier-mediated transport mechanisms in the brush-border membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号