首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was recently shown to negatively regulate LPS-induced acute inflammatory responses. We previously observed that the metabolic thiol antioxidant alpha-lipoic acid (LA) inhibits LPS-induced expression of cellular adhesion molecules and adherence of monocytes to human aortic endothelial cells. Here we investigated the mechanism by which LA attenuates LPS-induced monocyte activation in vitro and acute inflammatory responses in vivo. Incubation of human monocytic THP-1 cells with LA induced phosphorylation of Akt in a time- and dose-dependent manner. In cells pretreated with LA followed by LPS, Akt phosphorylation was elevated initially and further increased during incubation with LPS. This LA-dependent increase in Akt phosphorylation was accompanied by inhibition of LPS-induced NF-kappaB DNA binding activity and up-regulation of TNFalpha and monocyte chemoattractant protein 1. Lipoic acid-dependent Akt phosphorylation and inhibition of NF-kappaB activity were abolished by the PI3K inhibitors LY294002 and wortmannin. Furthermore, LA treatment of LPS-exposed C57BL/6N mice strongly enhanced phosphorylation of Akt and glycogen synthase kinase 3beta in blood cells; inhibited the LPS-induced increase in serum concentrations and/or tissue expression of adhesion molecules, monocyte chemoattractant protein 1, and TNFalpha; and attenuated NF-kappaB activation in lung, heart, and aorta. Lipoic acid also improved survival of endotoxemic mice. All of these antiinflammatory effects of LA were abolished by treatment of the animals with wortmannin. We conclude that LA inhibits LPS-induced monocyte activation and acute inflammatory responses in vitro and in vivo by activating the PI3K/Akt pathway. Lipoic acid may be useful in the prevention of sepsis and inflammatory vascular diseases.  相似文献   

5.

Background  

According to previous observations, basal gastric acid secretion is downregulated by phosphoinositol-3-(PI3)-kinase, phosphoinositide-dependent kinase (PDK1), and protein kinase B (PKBβ/Akt2) signaling. PKB/Akt phosphorylates glycogen synthase kinase GSK3. The present study explored whether PKB/Akt-dependent GSK3-phosphorylation modifies gastric acid secretion.  相似文献   

6.
Glimepiride is a third-generation sulfonylurea agent and is widely used in the treatment of type 2 diabetes mellitus. In addition to the stimulatory effects on pancreatic insulin secretion, glimepiride has also been reported to have extrapancreatic functions including activation of PI3 kinase (PI3K) and Akt in rat adipocytes and skeletal muscle. PI3-kinase and Akt are important signaling molecules in the regulation of proliferation and differentiation in various cells. This study investigated the actions of glimepiride in rat osteoblasts and the role of PI3K/Akt pathway. Cell proliferation was determined by measuring absorbance at 550 nm. Supernatant assay was used for measuring alkaline phosphatase activity. Western blot analysis was used for determining collagen I, insulin receptor substrate-1/2, PI3K/Akt, and endothelial nitric oxide synthase expression. We found that glimepiride significantly enhanced proliferation and differentiation of osteoblasts and led to activation of several key signaling molecules including insulin receptor substrate-1/2, PI3K/Akt, and endothelial nitric oxide synthase. Furthermore, a specific inhibitor of PI3K abolished the stimulatory effects of glimepiride on proliferation and differentiation. Taken together, these observations provide concrete evidence that glimepiride activates the PI3K/Akt pathway; and this activation is likely required for glimepiride to stimulate proliferation and differentiation of rat osteoblasts.  相似文献   

7.
Conover CA  Bale LK  Durham SK  Powell DR 《Endocrinology》2000,141(9):3098-3103
Cell-association and processing of insulin-like growth factor binding protein-3 (IGFBP-3) by cultured bovine fibroblasts results in markedly enhanced type I IGF receptor signaling at a step distal to ligand binding. The purpose of the present study was to determine the intracellular mediators of IGFBP-3's potentiating effect. Preincubation of cultured bovine fibroblasts with 50 nM IGFBP-3 had no effect alone, but enhanced by 3- to 4-fold IGF-I-stimulated 3H-aminoisobutryric acid (AIB) uptake. IGFBP-3-induced potentiation was specifically prevented if an inhibitor of phosphatidylinositol 3 (PI3)-kinase activation (LY294002), but not an inhibitor of mitogen-activated protein kinase activation (PD98059), was present during the preincubation period. IGFBP-3 did not directly activate the downstream effector of PI3-kinase, protein kinase B (PKB)/Akt. However, the sensitivity of PKB/Akt to activation by IGF-I was increased by 2- to 4-fold with IGFBP-3 pretreatment. This increased sensitivity was accompanied by altered mobility of PKB/Akt on SDS-polyacrylamide gels, suggestive of a diminished phosphorylation state. Consistent with this, okadaic acid, a potent serine/threonine phosphatase inhibitor, was able to block the potentiation effect of IGFBP-3 and prevent the altered mobility of the PKB/Akt molecule in response to IGFBP-3 treatment. PKB/Akt immunoprecipitated from IGFBP-3-pretreated cells was no longer recognized by an antibody specific for phosphorylated threonine followed by proline. These data indicate that IGFBP-3 modulates type I IGF receptor signaling through an effect on PI-3-kinase pathway substrates and suggest a novel mechanism of dephosphorylation whereby PKB/Akt is transformed into a more sensitive substrate of type I IGF receptor signaling.  相似文献   

8.
To investigate the potential neuroprotection of oxymatrine in hypoxic-ischemic injury in rat’s brain and the associated underlying mechanisms, modified neurological severity scores (mNSS) for neurological functional deficits, 2,3,5-triphenyl-tetrazolium chloride (TTC) staining for infarct volume, TUNEL assay and flow cytometry analysis for apoptosis were assessed. The expressions of Akt, glycogen synthase kinase 3 beta (GSK3β), phosphorylated Akt (p-Akt), phosphorylated GSK3β (p-GSK3β), nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) were measured by western blot. Our results showed that infarct volume and the apoptosis of NeuN-positive cells were significantly reduced in rats that administrated oxymatrine, with a corresponding improvement in neurological function after H/I. Upregulated p-Akt, p-GSK3β, Nrf-2 and HO-1 expressions were observed in response to oxymatrine treatment. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 counteracted the protective effect of oxymatrine, evidenced by western blot and histological outcomes. To conclude, our results suggested that oxymatrine could exert efficacious neuroprotective effect against H/I injury by inhibiting apoptosis and oxidative stress, which might be related to the activation of Akt and GSK3β and modulation of Nrf-2/HO-1 signaling pathway.  相似文献   

9.
Glucose-dependent insulinotropic polypeptide (GIP) acts as a glucose-dependent growth factor for beta-cells. Here we show that GIP and glucose also act synergistically as anti-apoptotic factors for beta-cells, using the well-differentiated beta-cell line, INS-1. Mitogenic and anti-apoptotic signaling of GIP were dependent upon pleiotropic activation of protein kinase A (PKA)/cAMP regulatory element binder (CREB), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-kinase)/PKB signaling modules. The signaling modules activated by GIP were dependent on glucose metabolism and calcium influx and were tightly linked by multiple activating and inhibiting cross-talk. These interactions included: (i) a central role of tyrosine phosphorylation for stimulation of PKA/CREB, MAPK and PI3-kinase/PKB, (ii) inhibition of PKA/CREB by the MAPK pathway at the level of MAPK kinase-1 or downstream, (iii) activation of MAPK signaling by PI3-kinase and PKA at the level of extracellular-signal regulated kinase 1/2 or upstream, and (iv) activation of PKB by MAPK and PKA signaling at the level of PKB or upstream. Furthermore, we demonstrated inhibition of CREB signaling by Ca(2+)/calmodulin kinase I/IV. These results indicated that GIP acts as a mitogenic and anti-apoptotic factor for beta-cells by pleiotropic activation of tightly linked signaling pathways in beta-cells.  相似文献   

10.
Thyroid hormone is known to cause hypertrophy, tachycardia, vasorelaxation, and enhanced contractile function. The exact mechanisms responsible for these effects are unknown but classical regulation of gene expression through binding to nuclear receptors has been widely implicated. Data have also accumulated suggesting that TH can exert effects through non-classical mechanisms involving activation of signal transduction pathways. Whether thyroid hormone can activate signal transduction pathways in the heart is unknown. In this study, we treated neonatal rat cardiomyocytes with T3 and determined the expression and phosphorylation of signaling molecules. T3 caused specific activation of Akt/PKB signaling after 24 h of treatment. Since Akt is known to protect against cell death, cells were serum-starved in the presence or absence of T3 to determine whether T3 could protect against serum starvation-induced cell death. Indeed, myocytes treated with T3 displayed enhanced sarcomeric structure after 4 days of serum starvation. T3 increased cell viability as measured by MTT assays, prevented DNA laddering, and reduced TUNEL positive cells, which was associated with increased phosphorylated Akt and glycogen synthase kinase 3beta (GSK-3beta). The protective effect of T3 on cell viability, DNA laddering and TUNEL positive cells were blocked by LY294002, a phosphoinositide-3 kinase (PI3K) inhibitor that blocks Akt signaling. Overall these data suggest that T3 can activate Akt in cardiomyocytes which protects myocytes against cell death.  相似文献   

11.
We previously reported that activation of phosphatidylinositol-3-kinase (PI3-kinase) is involved in ischemic preconditioning (PC). Our goal was to determine downstream targets of PI3-kinase. In perfused rat hearts, PC (4 cycles of 5 minutes of ischemia and 5 minutes of reflow) increased phosphorylation of glycogen synthase kinase-3beta (GSK-3beta), a downstream target of PI3-kinase and protein kinase B (PKB), an effect that was blocked by wortmannin. Because phosphorylation inactivates GSK-3beta, we examined whether PC-induced phosphorylation and inhibition of GSK-3beta is important in PC by using two inhibitors of GSK-3beta, lithium and SB 216763. Pretreatment of perfused rat hearts with lithium or SB 216763, before ischemia, mimicked the protective effects of PC; hearts treated with either lithium or SB 216763 had improved postischemic function and reduced infarct size. These findings indicate that inhibition of GSK-3beta is protective and that this PI3-kinase--dependent signaling pathway may play an important role in ischemic preconditioning.  相似文献   

12.
The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.  相似文献   

13.
14.
Phosphoinositide-3 kinases (PI3Ks) are a family of evolutionary conserved lipid kinases that mediate many cellular responses in both physiologic and pathophysiologic states. Class I PI3K can be activated by either receptor tyrosine kinase (RTK)/cytokine receptor activation (class I(A)) or G-protein-coupled receptors (GPCR) (class I(B)). Once activated PI3Ks generate phosphatidylinositols (PtdIns) (3,4,5)P(3) leading to the recruitment and activation of Akt/protein kinase B (PKB), PDK1 and monomeric G-proteins (e.g. Rac-GTPases), which then activate a range of downstream targets including glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR), p70S6 kinase, endothelial nitric oxide synthase (eNOS) and several anti-apoptotic effectors. Class I(A) (PI3Kalpha, beta and delta) and class I(B) (PI3Kgamma) PI3Ks mediate distinct phenotypes in the heart and under negative control by the 3'-lipid phosphatase, phosphatase and tensin homolog on chromosome ten (PTEN) which dephosphorylate PtdIns(3,4,5)P(3) into PtdIns(4,5)P(2). PI3Kalpha, gamma and PTEN are expressed in cardiomyocytes, fibroblasts, endothelial cells and vascular smooth muscle cells where they modulate cell survival/apoptosis, hypertrophy, contractility, metabolism and mechanotransduction. Several transgenic and knockout models support a fundamental role of PI3K/PTEN signaling in the regulation of myocardial contractility and hypertrophy. Consequently the PI3K/PTEN signaling pathways are involved in a wide variety of diseases including cardiac hypertrophy, heart failure, preconditioning and hypertension. In this review, we discuss the biochemistry and molecular biology of PI3K (class I isoforms) and PTEN and their critical role in cardiovascular physiology and diseases.  相似文献   

15.
16.
Ischemic preconditioning (IPC) is a potent cellular protective mechanism whereby brief periods of sublethal ischemia protect the myocardium from prolonged ischemia-induced injury. We demonstrate the selective role of phosphatidylinositol 3-kinase (PI3K) isoforms in IPC. Hearts from PI3Kgamma knockout mice (PI3Kgamma(-/-)) displayed poorer functional recovery and greater tissue injury following IPC compared to wild-type and PI3Kgamma(+/-) hearts. Examination of the cell-signaling pathways revealed restored phosphorylation levels of Akt and glycogen synthase kinase (GSK)3beta in wild-type hearts, which were abolished in PI3Kgamma(-/-) hearts subjected to IPC. Inhibition of GSK3beta by LiCl reversed the loss in protection in PI3Kgamma(-/-) hearts. In contrast, mice expressing a cardiac-specific kinase-deleted PI3Kalpha (PI3KalphaDN) were resistant to injury induced by 30 minutes of ischemia followed by 40 minutes of reperfusion. Furthermore, the resistance of PI3KalphaDN hearts to ischemia/reperfusion correlated with the persistent expression of p110gamma and was blocked by the PI3K inhibitor wortmannin, suggesting the possible enhanced cell signaling through the PI3Kgamma pathway. These results demonstrate the importance of the PI3Kgamma-Akt-GSK3beta signaling pathway in IPC. Selective activation of myocardial PI3Kgamma may be an attractive target for the treatment of ischemic heart disease.  相似文献   

17.
Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of beta2-adrenoceptor (beta2-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of beta2-AR-coupled G(i) proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the beta2-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the beta2-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables beta2-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in beta2-AR-induced cAMP formation. Blocking G(i) or Gbetagamma signaling with pertussis toxin or betaARK-ct, a peptide inhibitor of Gbetagamma, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of beta2-AR-PKA signaling sequentially involves G(i), Gbetagamma, and PI3K. Thus, PI3K constitutes a key downstream event of beta2-AR-G(i) signaling, which confines and negates the concurrent beta2-AR/G(s)-mediated PKA signaling.  相似文献   

18.
19.
It has been suggested that serine (Ser) phosphorylation of insulin receptor substrate-1 (IRS-1) decreases the ability of IRS-1 to be phosphorylated on tyrosine, thereby attenuating insulin signaling. There is evidence that angiotensin II (AII) may impair insulin signaling to the IRS-1/phosphatydilinositol 3-kinase (PI 3-kinase) pathway by enhancing Ser phosphorylation. Insulin stimulates NO production by a pathway involving IRS-1/PI3-kinase/Akt/endothelial NO synthase (eNOS). We addressed the question of whether AII affects insulin signaling involved in NO production in human umbilical vein endothelial cells and tested the hypothesis that the inhibitory effect of AII on insulin signaling was caused by increased site-specific Ser phosphorylation in IRS-1. Exposure of human umbilical vein endothelial cells to AII resulted in inhibition of insulin-stimulated production of NO. This event was associated with impaired IRS-1 phosphorylation at Tyr612 and Tyr632, two sites essential for engaging the p85 subunit of PI3-kinase, resulting in defective activation of PI 3-kinase, Akt, and eNOS. This inhibitory effect of AII was reversed by the type 1 receptor antagonist losartan. AII increased c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 activity, which was associated with a concomitant increase in IRS-1 phosphorylation at Ser312 and Ser616, respectively. Inhibition of JNK and ERK1/2 activity reversed the negative effects of AII on insulin-stimulated NO production. Our data suggest that AII, acting via the type 1 receptor, increases IRS-1 phosphorylation at Ser312 and Ser616 via JNK and ERK1/2, respectively, thus impairing the vasodilator effects of insulin mediated by the IRS-1/PI 3-kinase/Akt/eNOS pathway.  相似文献   

20.
Interleukin 3 (IL-3)-dependent survival of hematopoietic cells is known to rely on the activity of multiple signaling pathways, including a pathway leading to activation of phosphoinositide 3-kinase (PI 3-kinase), and protein kinase Akt is a direct target of PI 3-kinase. We find that Akt kinase activity is rapidly induced by the cytokine IL-3, suggesting a role for Akt in PI 3-kinase-dependent signaling in hematopoetic cells. Dominant-negative mutants of Akt specifically block Akt activation by IL-3 and interfere with IL-3-dependent proliferation. Overexpression of Akt or oncogenic v-akt protects 32D cells from apoptosis induced by IL-3 withdrawal. Apoptosis after IL-3 withdrawal is accelerated by expression of dominant-negative mutants of Akt, indicating that a functional Akt signaling pathway is necessary for cell survival mediated by the cytokine IL-3. Thus Akt appears to be an important mediator of anti-apoptotic signaling in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号