首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The auditory space map in the optic tectum (OT) (also known as superior colliculus in mammals) relies on the tuning of neurons to auditory localization cues that correspond to specific sound source locations. This study investigates the effects of early auditory experiences on the neural representation of binaural auditory localization cues. Young barn owls were raised in continuous omnidirectional broadband noise from before hearing onset to the age of ~ 65 days. Data from these birds were compared with data from age-matched control owls and from normal adult owls (>200 days). In noise-reared owls, the tuning of tectal neurons for interaural level differences and interaural time differences was broader than in control owls. Moreover, in neurons from noise-reared owls, the interaural level differences tuning was biased towards sounds louder in the contralateral ear. A similar bias appeared, but to a much lesser extent, in age-matched control owls and was absent in adult owls. To follow the recovery process from noise exposure, we continued to survey the neural representations in the OT for an extended period of up to several months after removal of the noise. We report that all the noise-rearing effects tended to recover gradually following exposure to a normal acoustic environment. The results suggest that deprivation from experiencing normal acoustic localization cues disrupts the maturation of the auditory space map in the OT.  相似文献   

2.
Removal of all contiguous visual cortical areas of one hemisphere results in a contralateral hemianopia. Subsequent deactivation of the contralesional superior colliculus (SC) nullifies the effects of the visual cortex ablation and restores visual orienting responses into the cortically blind hemifield. This deficit nullification has become known as the "Sprague Effect." Similarly, in the auditory system, unilateral ablation of auditory cortex results in severe sound localization deficits, as assessed by acoustic orienting, to stimuli in the contralateral hemifield. The purpose of this study was to examine whether auditory orienting responses can be restored into the impaired hemifield during deactivation of the contralesional SC. Three mature cats were trained to orient toward and approach an acoustic stimulus (broadband, white noise burst) that was presented centrally, or at one of 12 peripheral loci, spaced at 15 degrees intervals. After training, a cryoloop was chronically implanted over the dorsal surface of the right SC. During cooling of the cooling loop to temperatures sufficient to deactivate the superficial and intermediate layers (SZ, SGS, SO, SGI), auditory orienting responses were eliminated into the left (contracooled) hemifield while leaving acoustic orienting into the right (ipsicooled) hemifield unimpaired. This deficit was temperature-dependently graded from periphery to center. After the effectiveness of the SC cooling loop was verified, auditory cortex of the middle and posterior ectosylvian and anterior and posterior sylvian gyri was removed from the left hemisphere. As expected, the auditory cortex ablation resulted in a profound deficit in orienting to acoustic stimuli presented at any position in the right (contralesional) hemifield, while leaving acoustic orienting into the left (ipsilesional) hemifield unimpaired. The ablations of auditory cortex did not have any impact on a visual detection and orienting task. The additional deactivation of the contralesional SC to temperatures sufficient to cool the superficial and intermediate layers nullified the deficit caused by the auditory cortex ablation and acoustic orienting responses were restored into the right hemifield. This restoration was temperature-dependently graded from center to periphery. The deactivations were localized and confirmed with reduced uptake of radiolabeled 2-deoxyglucose. Therefore deactivation of the right superior colliculus after the ablation of the left auditory cortex yields a fundamentally different result from that identified during deactivation of the right superior colliculus before the removal of left auditory cortex in the same animal. Thus the "Sprague Effect" is not unique to a particular sensory system and deactivation of the contralesional SC can restore either visual or acoustic orienting responses into an impaired hemifield after cortical damage.  相似文献   

3.
Summary 1. Single unit activity was recorded in the Substantia Nigra pars reticulata (SNpr) of cats trained to orient their gaze toward visual and/or auditory targets. 2. Cells in the SNpr have a steady high rate of spontaneous activity ranging from 35 to 120 spikes per second. The neurons respond to sensory stimuli or in relation to saccadic eye movements with a decrease or a cut-off of the spontaneous discharge. 3. Among 109 cells recorded in the SNPR 60 were responsive to visual stimuli (mean latency = 118 ms). Most of the receptive fields which were plotted were large encompassing part of the ipsilateral field. 4. Thirty nine (39) cells were responsive to auditory stimuli (mean latency = 81 ms). A majority of these cells showed a better response for stimuli located in the contralateral hemifield. 5. In a few cells, the sensory responses were modulated by the subsequent orienting behavior of the animals. 6. Thirty one (31) cells showed a response in relation to saccades. These units typically stopped discharging between 50 and 300 ms prior to the onset of the saccade. 39% of these units also responded in relation to spontaneous saccades in the dark. 61% of the saccadic cells also responded to sensory stimuli in the absence of saccades. Six (6) cells were found to respond to active head movements. 7. These results are discussed in the framework of the role that the basal ganglia might have in the selection of the sensory stimuli that trigger orienting behaviors.  相似文献   

4.
Auditory brainstem abnormalities affecting decussation patterns and nuclei involved in the acoustic chiasm exist in a variety of albino mammals, suggesting that binaural processes underlying spatial hearing may be disrupted in these mutants. To evaluate this we have compared the contribution of the two ears in albino and normally pigmented guinea pigs to the spatial tuning of auditory neurons in the deep layers of the superior colliculus (SC). Broadband noise stimuli at threshold and at suprathreshold intensities were presented from different azimuthal loudspeaker locations under free-field anechoic conditions, and auditory receptive fields were plotted before, during and after occluding the ipsilateral ear. We show that the deep layers of the albino SC contain a map of contralateral auditory azimuth along its anteroposterior axis, which is aligned with the visual map in the superficial layers above, just as in normal animals. We also show that threshold spatial responses are elicited only via the contralateral ear and at similar stimulus intensities (mean~30 dB SPL) in the two pigmentation phenotypes. The mechanisms that maintain spatial tuning at sound intensities of 10–40 dB above threshold, however, differ markedly in these animals. Plugging the ipsilateral ear in normal guinea pigs caused significant expansions of their auditory receptive fields and loss of directional tuning, but in the albinos occlusion had little effect on these spatial properties. The results suggest that while spatial selectivity for relatively loud sounds among SC neurons is normally maintained via the binaural combination of contralateral excitatory drive and ipsilateral inhibition, it is achieved in albinos almost exclusively by monaural input from the contralateral ear. This finding is consistent with an excessive contralateral ear dominance of higher levels of the albino auditory system caused by anomalies of their acoustic chiasm, analogous to the monocular dominance of the visual system that results from excessive axon crossing at the optic chiasm in these animals.  相似文献   

5.
Bimodal, auditory-visual neurons in the optic tectum of the barn owl are sharply tuned for sound source location. The auditory receptive fields (RFs) of these neurons are restricted in space primarily as a consequence of their tuning for interaural time differences and interaural level differences across broad ranges of frequencies. In this study, we examined the extent to which frequency-specific features of early auditory experience shape the auditory spatial tuning of these neurons. We manipulated auditory experience by implanting in one ear canal an acoustic filtering device that altered the timing and level of sound reaching the eardrum in a frequency-dependent fashion. We assessed the auditory spatial tuning at individual tectal sites in normal owls and in owls raised with the filtering device. At each site, we measured a family of auditory RFs using broadband sound and narrowband sounds with different center frequencies both with and without the device in place. In normal owls, the narrowband RFs for a given site all included a common region of space that corresponded with the broadband RF and aligned with the site's visual RF. Acute insertion of the filtering device in normal owls shifted the locations of the narrowband RFs away from the visual RF, the magnitude and direction of the shifts depending on the frequency of the stimulus. In contrast, in owls that were raised wearing the device, narrowband and broadband RFs were aligned with visual RFs so long as the device was in the ear but not after it was removed, indicating that auditory spatial tuning had been adaptively altered by experience with the device. The frequency tuning of tectal neurons in device-reared owls was also altered from normal. The results demonstrate that experience during development adaptively modifies the representation of auditory space in the barn owl's optic tectum in a frequency-dependent manner.  相似文献   

6.
Binaural acoustic cues such as interaural time and level differences (ITDs and ILDs) are used by many species to determine the locations of sound sources. The relationship between cue values and locations in space is frequency dependent and varies from individual to individual. In the current study, we tested the capacity of neurons in the forebrain localization pathway of the barn owl to adjust their tuning for binaural cues in a frequency-dependent manner in response to auditory experience. Auditory experience was altered by raising young owls with a passive acoustic filtering device that caused frequency-dependent changes in ITD and ILD. Extracellular recordings were made in normal and device-reared owls to characterize frequency-specific ITD and ILD tuning in the auditory archistriatum (AAr), an output structure of the forebrain localization pathway. In device-reared owls, individual sites in the AAr exhibited highly abnormal, frequency-dependent variations in ITD tuning, and across the population of sampled sites, there were frequency-dependent shifts in the representation of ITD. These changes were in a direction that compensated for the acoustic effects of the device on ITD and therefore tended to restore a normal representation of auditory space. Although ILD tuning was degraded relative to normal at many sites in the AAr of device-reared owls, the representation of frequency-specific ILDs across the population of sampled sites was shifted in the adaptive direction. These results demonstrate that early auditory experience shapes the representation of binaural cues in the forebrain localization pathway in an adaptive, frequency-dependent manner.  相似文献   

7.
The barn owl naturally responds to an auditory or visual stimulus in its environment with a quick head turn toward the source. We measured these head saccades evoked by auditory, visual, and simultaneous, co-localized audiovisual stimuli to quantify multisensory interactions in the barn owl. Stimulus levels ranged from near to well above saccadic threshold. In accordance with previous human psychophysical findings, the owl's saccade reaction times (SRTs) and errors to unisensory stimuli were inversely related to stimulus strength. Auditory saccades characteristically had shorter reaction times but were less accurate than visual saccades. Audiovisual trials, over a large range of tested stimulus combinations, had auditory-like SRTs and visual-like errors, suggesting that barn owls are able to use both auditory and visual cues to produce saccades with the shortest possible SRT and greatest accuracy. These results support a model of sensory integration in which the faster modality initiates the saccade and the slower modality remains available to refine saccade trajectory.  相似文献   

8.
Spatial attention modulates sound localization in barn owls   总被引:3,自引:0,他引:3  
Attentional influence on sound-localization behavior of barn owls was investigated in a cross-modal spatial cuing paradigm. After being cued to the most probable target side with a visual cuing stimulus, owls localized upcoming auditory target stimuli with a head turn toward the position of the sound source. In 80% of the trials, cuing stimuli pointed toward the side of the upcoming target stimulus (valid configuration), and in 20% they pointed toward the opposite side (invalid configuration). We found that owls initiated the head turns by a mean of 37.4 ms earlier in valid trials, i.e., mean response latencies of head turns were reduced by 16% after a valid cuing stimulus. Thus auditory stimuli appearing at the cued side were processed faster than stimuli appearing at the uncued side, indicating the influence of a spatial-selective attention mechanism. Turning angles were not different when owls turned their head toward a cued or an uncued location. Other types of attention influencing sound localization, e.g., a reduction of response latency as a function of the duration of cue-target delay, could not be observed. This study is the first attempt to investigate attentional influences on sound localization in an animal model.  相似文献   

9.
We examined the ability of mature cats to accurately orient to, and approach, an acoustic stimulus during unilateral reversible cooling deactivation of primary auditory cortex (AI) or 1 of 18 other cerebral loci. After attending to a central visual stimulus, the cats learned to orient to a 100-ms broad-band, white-noise stimulus emitted from a central speaker or 1 of 12 peripheral sites (at 15 degrees intervals) positioned along the horizontal plane. Twenty-eight cats had two to six cryoloops implanted over multiple cerebral loci. Within auditory cortex, unilateral deactivation of AI, the posterior auditory field (PAF) or the anterior ectosylvian sulcus (AES) resulted in orienting deficits throughout the contralateral field. However, unilateral deactivation of the anterior auditory field, the second auditory cortex, or the ventroposterior auditory field resulted in no deficits on the orienting task. In multisensory cortex, unilateral deactivation of neither ventral or dorsal posterior ectosylvian cortices nor anterior or posterior area 7 resulted in any deficits. No deficits were identified during unilateral cooling of the five visual regions flanking auditory or multisensory cortices: posterior or anterior ii suprasylvian sulcus, posterior suprasylvian sulcus or dorsal or ventral posterior suprasylvian gyrus. In motor cortex, we identified contralateral orienting deficits during unilateral cooling of lateral area 5 (5L) or medial area 6 (6m) but not medial area 5 or lateral area 6. In a control visual-orienting task, areas 5L and 6m also yielded deficits to visual stimuli presented in the contralateral field. Thus the sound-localization deficits identified during unilateral deactivation of area 5L or 6m were not unimodal and are most likely the result of motor rather than perceptual impairments. Overall, three regions in auditory cortex (AI, PAF, AES) are critical for accurate sound localization as assessed by orienting.  相似文献   

10.

OBJECTIVE:

To determine whether neurophysiological auditory brainstem responses to clicks and repeated speech stimuli differ between typically developing children and children with phonological disorders.

INTRODUCTION:

Phonological disorders are language impairments resulting from inadequate use of adult phonological language rules and are among the most common speech and language disorders in children (prevalence: 8 ‐ 9%). Our hypothesis is that children with phonological disorders have basic differences in the way that their brains encode acoustic signals at brainstem level when compared to normal counterparts.

METHODS:

We recorded click and speech evoked auditory brainstem responses in 18 typically developing children (control group) and in 18 children who were clinically diagnosed with phonological disorders (research group). The age range of the children was from 7‐11 years.

RESULTS:

The research group exhibited significantly longer latency responses to click stimuli (waves I, III and V) and speech stimuli (waves V and A) when compared to the control group.

DISCUSSION:

These results suggest that the abnormal encoding of speech sounds may be a biological marker of phonological disorders. However, these results cannot define the biological origins of phonological problems. We also observed that speech‐evoked auditory brainstem responses had a higher specificity/sensitivity for identifying phonological disorders than click‐evoked auditory brainstem responses.

CONCLUSIONS:

Early stages of the auditory pathway processing of an acoustic stimulus are not similar in typically developing children and those with phonological disorders. These findings suggest that there are brainstem auditory pathway abnormalities in children with phonological disorders.  相似文献   

11.
The dorsal nucleus of the lateral lemniscus (DNLL) is a distinct auditory neuronal group located ventral to the inferior colliculus (IC). It receives excitatory and inhibitory afferent inputs from various structures of the auditory lower brainstem and sends GABAergic inhibitory efferents mainly to the contralateral DNLL and the bilateral IC. The synaptic excitation in DNLL neurons consists of two components, an early fast depolarization and a later long lasting one. Glutamate is the probable excitatory neurotransmitter for DNLL neurons. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate the early part of the excitation while N-Methyl-D-aspartate (NMDA) receptors mediate the long lasting component. The long lasting NMDA receptor-mediated component in the DNLL may contribute to a prolonged inhibition in the IC. The DNLL is thought to be a structure for processing binaural information. Most DNLL neurons in rat and bat are sensitive to interaural intensity differences (IIDs). They are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear, showing an excitatory/inhibitory (EI) binaural response pattern. The EI pattern can be attributed to synaptic inputs that originate from various structures in the lower auditory brainstem and impinge on the DNLL neurons. In cat some DNLL neurons are sensitive to IIDs and some are sensitive to interaural time differences. In addition, DNLL neurons exhibit different temporal response patterns to contralateral tonal stimulation and respond to amplitude modulated tones, implying that DNLL may contribute to processing temporally complex acoustic information. DNLL neurons shape binaural responses in the contralateral inferior colliculus and auditory cortex through their inhibitory brainstem projections and contribute to the accuracy with which animals localize sounds in space.  相似文献   

12.
In order to examine the possibility that the sensory cortex participates in the mediation of adrenocortical responses following sensory stimuli, the effects of photic and acoustic stimuli on plasma corticosterone were studied in rats with either visual or auditory cortex ablation. In animals with visual cortex ablation, the adrenocortical response to acoustic stimuli was intact; however, it was significantly reduced following photic stimulation. On the other hand, in animals with auditory cortex ablation, the response to acoustic stimulation was significantly reduced, but the response to photic stimulation remained intact. These data demonstrate the participation of the specific sensory cortex in adrenocortical responses following the stimulation of the corresponding sensory modality. The possible mechanisms involved may be either a tonic facilitatory effect of the specific cortex on subcortical mechanisms or the transmission of the specific stimuli in the primary sensory pathways, to achieve a full adrenocortical discharge.  相似文献   

13.
Blink reflexes are usually considered the most representative and consistent response of the auditory startle reaction (ASR), and they are often the only response evaluated in human psychophysiological studies. However, auditory stimuli also induce an auditory blink reflex (ABR), the physiological characteristics and brainstem circuitry of which may be different from those of the ASR. This study aimed to investigate whether there were differences between the orbicularis oculi (OOc) responses elicited with the ABR (OOcABR) and those elicited with the ASR (OOcASR) regarding their behavior to prepulse modulation. For comparison, we also examined the OOc responses to supraorbital nerve stimulation (OOcEBR). Electromyographic responses were simultaneously recorded from the OOc, masseter (MAS) and sternocleidomastoid (SCM) muscles. ABRs were considered when auditory stimuli induced responses limited to the OOc, and ASRs were considered when responses were induced in all muscles recorded from. Prepulse stimuli were either a weak electrical stimulation at the third finger (somatosensory prepulse) or a weak acoustic tone (auditory prepulse) that preceded the response-eliciting stimuli by intervals ranging from 0 to 200 ms. Prepulse effects differed according to prepulse modality, but the OOcABR and the OOcASR were always modulated in the same way. In both responses, somatosensory prepulses induced facilitation from 20 to 50 ms, followed by inhibition beyond 75 ms, and auditory prepulses induced no facilitation but a significant inhibition beyond 30 ms. In the OOcEBR, both somatosensory and acoustic prepulses induced facilitation of R1 and inhibition of R2 beyond 30 ms. Our results suggest that the OOcABR and the OOcASR exhibit the same physiological behavior regarding prepulse modulation. It is hypothesized that prepulse facilitation is due to direct impingement of subthreshold excitatory inputs onto the facial motoneurons while prepulse inhibition results from the engagement of a presynaptic inhibitory circuit in the brainstem. Received: 9 October 1998 / Accepted: 29 April 1999  相似文献   

14.
In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately +/-25 degrees), head movements are necessary when orienting to targets at the extremes of or outside this range. Here we tested the hypothesis that the accuracy of localizing auditory and visual targets using more ethologically natural head-unrestrained gaze shifts would be superior to head-restrained eye saccades. The effect of stimulus duration on localization accuracy was also investigated. Three cats were trained using operant conditioning with their heads initially restrained to indicate the location of auditory and visual targets via eye position. Long-duration visual targets were localized accurately with little error, but the locations of short-duration visual and both long- and short-duration auditory targets were markedly underestimated. With the head unrestrained, localization accuracy improved substantially for all stimuli and all durations. While the improvement for long-duration stimuli with the head unrestrained might be expected given that dynamic sensory cues were available during the gaze shifts and the lack of a memory component, surprisingly, the improvement was greatest for the auditory and visual stimuli with the shortest durations, where the stimuli were extinguished prior to the onset of the eye or head movement. The underestimation of auditory targets with the head restrained is explained in terms of the unnatural sensorimotor conditions that likely result during head restraint.  相似文献   

15.
Sound localization is one of the most important tasks performed by the auditory system. Differences in the arrival time of sound at the two ears are the main cue to localize low-frequency sound in the azimuth. In the mammalian brain, such interaural time differences (ITDs) are encoded in the auditory brain stem; first by the medial superior olive (MSO) and then transferred to higher centers, such as the dorsal nucleus of the lateral lemniscus (DNLL), a brain stem nucleus that gets a direct input from the MSO. Here we demonstrate for the first time that ITD sensitivity in gerbils undergoes a developmental maturation after hearing onset. We further show that this development can be disrupted by altering the animal's acoustic experience during a critical period. In animals that had been exposed to omnidirectional white noise during a restricted time period right after hearing onset, ITD tuning did not develop normally. Instead, it was similar to that of juvenile animals 3 days after hearing onset, with the ITD functions not adjusted to the physiological range. Animals that had been exposed to omnidirectional noise as adults did not show equivalent abnormal ITD tuning. The development presented here is in contrast to that of the development of neuronal representation of ITDs in the midbrain of barn owls and interaural intensity differences in ferrets, where the representations are adjusted by an interaction of auditory and visual inputs. The development of ITD tuning presented here most likely depends on normal acoustic experience and may be related to the maturation of inhibitory inputs to the ITD detector itself.  相似文献   

16.
For many songbirds, the vocal repertoire constitutes acoustically distinct songs that are flexibly used in various behavioral contexts. To investigate how these different vocalizations are represented in the song neural system, we presented multiple song stimuli while performing extracellular recording in nucleus HVC in adult male song sparrows Melospiza melodia, a species known for its complex vocal repertoire and territorial use of song. We observed robust auditory responses to natural song stimuli in both awake and anesthetized animals. Auditory responses were selective for multiple songs of the bird's own repertoire (BOR) over acoustically modified versions of these stimuli. Selectivity was evident in both awake and anesthetized HVC, in contrast to auditory selectivity in zebra finch HVC, which is apparent only under anesthesia. Presentation of multiple song stimuli at different recording locations demonstrated that stimulus acoustic features and local neuronal tuning both contribute to auditory responsiveness. HVC auditory responsiveness was broadly distributed and nontopographic. Variance in auditory responsiveness was greater among than within HVC recording locations in both anesthetized and awake birds, in contrast to the global nature of auditory representation within zebra finch HVC. To assess the spatial consistency of auditory representation within HVC, we measured the repeatability with which ensembles of BOR songs were represented across the nucleus. Auditory response ranks to different songs were more consistent across recording locations in awake than in anesthetized animals. This spatial reliability of auditory responsiveness suggests that sound stimulus acoustic features contribute relatively more to auditory responsiveness in awake than in anesthetized animals.  相似文献   

17.
In the midbrain sound localization pathway of the barn owl, a map of auditory space is synthesized in the external nucleus of the inferior colliculus (ICX) and transmitted to the optic tectum. Early auditory experience shapes these maps of auditory space in part by modifying the tuning of the constituent neurons for interaural time difference (ITD), a primary cue for sound-source azimuth. Here we show that these adaptive modifications in ITD tuning correspond to changes in the pattern of connectivity within the inferior colliculus. We raised owls with an acoustic filtering device in one ear that caused frequency-dependent changes in sound timing and level. As reported previously, device rearing shifted the representation of ITD in the ICX and tectum but not in the primary source of input to the ICX, the central nucleus of the inferior colliculus (ICC). We applied the local anesthetic lidocaine (QX-314) iontophoretically in the ICC to inactivate small populations of neurons that represented particular values of frequency and ITD. We measured the effect of this inactivation in the optic tecta of a normal owl and owls raised with the device. In the normal owl, inactivation at a critical site in the ICC eliminated responses in the tectum to the frequency-specific ITD value represented at the site of inactivation in the ICC. The location of this site was consistent with the known pattern of ICC-ICX-tectum connectivity. In the device-reared owls, adaptive changes in the representation of ITD in the tectum corresponded to dramatic and predictable changes in the locations of the critical sites of inactivation in the ICC. Given that the abnormal representation of ITD in the tectum depended on frequency and was likely conveyed directly from the ICX, these results suggest that experience causes large-scale, frequency-specific adjustments in the pattern of connectivity between the ICC and the ICX.  相似文献   

18.
The middle ear muscle (MEM) reflexes function to protect the inner ear from intense acoustic stimuli and to reduce acoustic masking. Sound presented to the same side or to the opposite side activates the MEM reflex on both sides. The ascending limbs of these pathways must be the auditory nerve fibers originating in the cochlea and terminating in the cochlear nucleus, the first relay station for all ascending auditory information. The descending limbs project from the motoneurons in the brainstem to the MEMs on both sides, causing their contraction. Although the ascending and descending pathways are well described, the cochlear nucleus interneurons that mediate these reflex pathways have not been identified. In order to localize the MEM reflex interneurons, we developed a physiologically based reflex assay in the rat that can be used to determine the integrity of the reflex pathways after experimental manipulations. This assay monitored the change in tone levels and distortion product otoacoustic emissions within the ear canal in one ear during the presentation of a reflex-eliciting sound stimulus in the contralateral ear. Preliminary findings using surgical transection and focal lesioning of the auditory brainstem to interrupt the MEM reflexes suggest that MEM reflex interneurons are located in the ventral cochlear nucleus.  相似文献   

19.
Creating a sense of auditory space   总被引:3,自引:1,他引:2  
Determining the location of a sound source requires the use of binaural hearing – information about a sound at the two ears converges onto neurones in the auditory brainstem to create a binaural representation. The main binaural cue used by many mammals to locate a sound source is the interaural time difference, or ITD. For over 50 years a single model has dominated thinking on how ITDs are processed. The Jeffress model consists of an array of coincidence detectors – binaural neurones that respond maximally to simultaneous input from each ear – innervated by a series of delay lines – axons of varying length from the two ears. The purpose of this arrangement is to create a topographic map of ITD, and hence spatial position in the horizontal plane, from the relative timing of a sound at the two ears. This model appears to be realized in the brain of the barn owl, an auditory specialist, and has been assumed to hold for mammals also. Recent investigations, however, indicate that both the means by which neural tuning for preferred ITD, and the coding strategy used by mammals to determine the location of a sound source, may be very different to barn owls and to the model proposed by Jeffress.  相似文献   

20.
Afferent auditory processing in the human brainstem is often assumed to be determined by acoustic stimulus features alone and immune to stimulation by other senses or cognitive factors. In contrast, we show that lipreading during speech perception influences early acoustic processing. Event-related brainstem potentials were recorded from ten healthy adults to concordant (acoustic-visual match), conflicting (acoustic-visual mismatch) and unimodal stimuli. Audiovisual (AV) interactions occurred as early as ∼11 ms post-acoustic stimulation and persisted for the first 30 ms of the response. Furthermore, the magnitude of interaction depended on AV pairings. These findings indicate considerable plasticity in early auditory processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号