共查询到20条相似文献,搜索用时 15 毫秒
1.
The human neuroblastoma cell line, SH-SY5Y, was used to examine the effects of morphine and the endogenous opioid peptides, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), on mu opioid receptor (MOR) internalization and down-regulation. Treatment for 24 h with EM-1, EM-2 or morphine at 100 nM, 1 microM and 10 microM resulted in a dose-dependent down-regulation of mu receptors. Exposure of cells to 10 microM EM-1 for 2.5, 5 and 24 h resulted in a time-dependent down-regulation of mu receptors. Down-regulation of mu receptors by morphine and EM-1 was blocked by treatment with hypertonic sucrose, consistent with an endocytosis-dependent mechanism. Sensitive cell-surface binding studies with a radiolabeled mu antagonist revealed that morphine was able to induce internalization of mu receptors naturally expressed in SH-SY5Y cells. EM-1 produced a more rapid internalization of mu receptors than morphine, but hypertonic sucrose blocked the internalization induced by each of these agonists. This study demonstrates that, like morphine, the endomorphins down-regulate mu opioid receptors in a dose- and time-dependent manner. This study also demonstrates that morphine, as well as EM-1, can induce rapid, endocytosis-dependent internalization of mu opioid receptors in SH-SY5Y cells. These results may help elucidate the ability of mu agonists to regulate the number and responsiveness of their receptors. 相似文献
2.
Disease states such as diabetes mellitus are known to impair hippocampal glucoregulatory activities, which may contribute to cognitive deficits observed in diabetic subjects. Stress or exposure to stress levels of glucocorticoids (GCs) are also intimately involved in hippocampal glucoregulatory activities and the actions of GCs are often most evident in hyperglycemic states. Glucose transporter (GLUT) expression, activity and translocation represent components of the glucoregulatory activities of the hippocampus that may be disrupted by diabetes and stress. Accordingly, the current study examined the effects of stress, streptozotocin (STZ)-induced diabetes and the combined actions of stress and hyperglycemia upon GLUT8 mRNA expression, protein levels and intracellular trafficking in the rat hippocampus. Short-term stress in euglycemic rats had no effect upon GLUT8 mRNA, while restraint stress normalized diabetes mediated increases in GLUT8 mRNA expression in STZ treated rats. Radioimmunocytochemical analysis revealed that total GLUT8 protein levels were not altered by diabetes, short-term stress or the combined actions of hyperglycemia and stress. However, subcellular compartmentalization of GLUT8 was modulated by stress in that hippocampal GLUT8 protein levels were increased in high-density microsomal (HDM) fractions isolated from rats subjected to stress. In contrast, STZ-diabetes decreased GLUT8 protein levels in the HDM fraction, an effect that was potentiated by stress. Collectively, these results demonstrate that the actions of GCs may be dramatically different in euglycemic and hyperglycemic/insulinopenic states, suggesting that stress may increase hippocampal neuronal responsiveness under normal physiological conditions while increasing hippocampal neuronal vulnerability in pathophysiological settings such as in type 1 diabetes. 相似文献
3.
The purpose of this study was to examine whether the efflux transport system for taurine from brain to blood is present at the blood-brain barrier (BBB) by using the brain efflux index (BEI) method and to determine whether the taurine transport system is regulated after central nervous system cell damage by tumor necrosis factor-alpha (TNF-alpha) in vivo. [(3)H]Taurine was microinjected into the parietal cortex area 2 of the rat brain, and was eliminated from the brain with an efflux transport rate of 1.22 x 10(-2) min(-1), and the process is saturable with a K(m) of 39.1 microM. This process was significantly inhibited by taurine transporter (TAUT) inhibitors, such as unlabeled taurine, beta-alanine, betaine, nipecotic acid and gamma-aminobutyric acid (GABA). In addition, the effect of tumor necrosis factor-alpha on [(3)H]taurine transport was investigated. [(3)H]Taurine uptake was increased and its efflux was reduced by pretreatment with tumor necrosis factor-alpha. Also, [(3)H]taurine efflux was reduced by tumor necrosis factor-alpha in a time- and dose-dependent manner. In conclusion, there is the efflux pump for taurine at the blood-brain barrier to reduce taurine concentration in the brain interstitial fluid, and this process was carrier mediated. In addition, the transport system for taurine through the blood-brain barrier was found to be regulated by tumor necrosis factor-alpha in vivo. 相似文献
4.
Glucose transporter (GLUT) 4 plays an important role in insulin-induced glucose uptake in skeletal muscle and white adipose tissue. Although GLUT4 is abundant in the hypothalamus as well as in these peripheral tissues, little is known about the role of GLUT4 in the hypothalamus. In this study, we examined the subcellular localization of GLUT4 and the activation of insulin signaling pathways in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions. The expression of GLUT4 in the arcuate nucleus of ob/ob mice was higher than that in lean mice. Interestingly, GLUT4 on the plasma membrane increased significantly in neurons of the arcuate nucleus of ob/ob mice when compared to that in lean mice. Because serum insulin levels of ob/ob mice were very high, we hypothesized that insulin strongly stimulates GLUT4 translocation in the arcuate nucleus of ob/ob mice. Unexpectedly, tyrosine phosphorylation of IR and insulin receptor substrate-1 (IRS-1) was faint in the hypothalamus of lean and ob/ob mice. In addition, phosphorylation of IRS-1 at Ser307 in the hypothalamus of ob/ob mice was higher when compared to that in lean mice, suggesting that insulin signaling is impaired by phosphorylation of IRS-1 at Ser307 in the hypothalamus of ob/ob mice. However, serine phosphorylation of Akt in the arcuate nucleus of ob/ob mice increased significantly when compared to that in lean mice. Furthermore, the expression of brain-derived neurotrophic factor, an activator of PI3K-Akt pathway in neurons, increased significantly in the ventromedial hypothalamus of ob/ob mice. We discuss the possibility of novel pathways which induce the translocation of GLUT4 in the arcuate nucleus of ob/ob mice. 相似文献
5.
Uptake of biocytin and biotin was investigated in cultured transformed variants of neuronal (NB2a neuroblastoma) and glial (C6 astrocytoma) CNS cells. NB2a cells took up both compounds but biocytin was transported more efficiently than biotin in the nanomolar concentration range. In NB2a cells a single transport mechanism was found for biocytin with different kinetic parameters in the presence of high extracellular Na+ (Km 0.4 microM, Vmax 20 pmol/min/mg), K+ (Km 1.7 microM, Vmax 32 pmol/min/mg), or choline+ (Km 0.1 microM, Vmax 5 pmol/min/mg). Two transport systems (Km1 17 microM, Vmax1 53 pmol/min/mg; Km2 314 microM, Vmax2 360 pmol/min/mg) were identified for biotin with only system 1 being Na+-dependent. Biocytin uptake was competitively inhibited by excess biotin but not vice versa. Inhibition studies with structural analogs indicated different specificities for biotin and biocytin uptake. Biocytin uptake into C6 cells was hardly detectable whereas biotin was taken up by diffusion (kD 0.6 microl/min/mg) and a single saturable mechanism (Km 70 microM, Vmax 119 pmol/min/mg) at high extracellular Na+. High extracellular K+ enhanced biotin diffusion into C6 cells. Inhibition studies with structural analogs revealed a less specific biotin uptake mechanism in C6 than in NB2a cells. Biocytin normalized deficient biotin-dependent propionyl-CoA carboxylase activity within 4 h in biotin-deficient NB2a cells whereas in C6 cells reactivation was <20% thereby confirming that biocytin is only poorly transported into C6 cells. Specific biocytin uptake into NB2a cells is to our knowledge the first demonstration of a carrier-mediated transport mechanism for this compound. Neuronal biocytin uptake might contribute to the pathogenesis of biotinidase deficiency where biocytin is present in elevated levels. 相似文献
6.
Uptake of neurotransmitters into synaptic vesicles is driven by an electrochemical gradient generated by a vacuolar-type proton pump ATPase. This uptake implies a key role for synaptic vesicles in the regulation of neurotransmitter systems. Guanine nucleoside and nucleotides are involved in the inhibition of glutamate-induced cellular responses via an extracellular action and diverse trophic, proliferative, and modulatory effects of guanine nucleotides on neural cells have been shown. Here, we characterized the uptake of GTP into synaptic vesicles isolated from whole rat brain, by using a tritiated poorly-hydrolyzable GTP analog, 5'-guanylylimidodiphosphate ([3H]GppNHp). Uptake of GTP into synaptic vesicles is saturable, time- and temperature-dependent, and relies on a proton-eletrochemical gradient. However, [3H]GMP and [3H]GDP radioactive labeling in synaptic vesicles is not dependent on temperature and vesicular ATPase activity, which indicates that these nucleotides only bind to and are not taken up into synaptic vesicles. GTP is taken up by the same eletrochemical gradient-dependent transport system, as are neurotransmitters storage, which indicates that this guanine nucleotide may also function as a neurotransmitter. 相似文献
7.
We have previously shown that chronic treatment with selective serotonin reuptake inhibitors (SSRIs), fluvoxamine and paroxetine, attenuated m-chlorophenylpiperazine (mCPP)-induced hypolocomotion in rats. The effect of these SSRIs on the response to mCPP is thought to be caused by the desensitization of 5-HT2C receptor function. In the present study, we investigated whether chronic administration of SSRI could reduce another pharmacological response to mCPP in rats, i.e., the induction of the secretion of corticosterone. The mCPP-induced increase in the serum concentration of corticosterone was not blocked by the 5-HT2C antagonist SB242084, but was blocked by the 5-HT2A antagonist ketanserin. Chronic treatment with fluvoxamine and paroxetine attenuated the response to mCPP, while these SSRIs had no effects in control rats. These results suggest that the desensitization of 5-HT2A receptor function occurs in the same way as that of 5-HT2C receptor function through chronic treatment with either fluvoxamine or paroxetine as a consequence of prolonged exposure to elevated levels of serotonin. The hypersensitivity of 5-HT2A receptors is observed in depressed patients, and chronic treatment with many antidepressants such as tricyclic antidepressants have been reported to reduce 5-HT2A receptor density and/or efficacy. The desensitization of 5-HT2A receptor function might contribute to the therapeutic mechanism of action of these SSRIs, as seen with other classes of antidepressants. 相似文献
8.
Although radioligand binding studies have shown that the serotonin 5-HT(2C) receptor (5-HT(2C)R) is widely expressed throughout the brain, more detailed knowledge of 5-HT(2C)R distribution within different neuronal populations will aid in understanding the mechanisms through which this receptor acts. Double-label immunohistochemical procedures can be utilized to examine the localization of receptors within specific neuronal populations. In order to conduct such studies, however, it was first necessary to examine the utility and specificity of two commercially available anti-5-HT(2C)R antibodies [from Santa Cruz (SC) and BD PharMingen (PH)]. In male Sprague-Dawley rats, both antibodies produced widespread immunoreactivity (IR) throughout the brain area chosen for study, the ventral tegmental area, which is the origin of the dopamine mesocorticoaccumbens "reward" pathway. Co-labeling with the SC and PH 5-HT(2C)R antibodies demonstrated that IR for the two antibodies largely overlapped. However, SC 5-HT(2C)R IR was more concentrated within IR cell bodies and was more consistent among assays than the PH 5-HT(2C)R IR. Thus, the SC 5-HT(2C)R antibody was chosen for subsequent studies. When examined in 5-HT(2C)R knockout vs. wild-type mice, the SC 5-HT(2C)R antibody produced widespread IR in wild-type, but not 5-HT(2C)R knockout, mice. In addition, 5-HT(2C)R-IR was not present in either native CHO cells, known to be devoid of 5-HT(2A)R or 5-HT(2C)R, or in CHO cells transfected with the 5-HT(2A)R. Thus, these studies suggest that the SC 5-HT(2C)R antibody produces reliable staining selective for 5-HT(2C)R vs. 5-HT(2A)R in rodent brains and is therefore suitable for use in future immunofluorescence 5-HT(2C)R localization studies. 相似文献
9.
10.
GABAA receptors are pentamers composed of subunits derived from the alpha, beta, gamma, delta, theta, epsilon, and pi gene families. alpha1, alpha4, gamma2, and delta subunits are expressed in the dentate gyrus of the hippocampus, but their subcellular distribution has not been described. Hippocampal sections were double-labeled for the alpha1, alpha4, gamma2, and delta subunits and GAD65 or gephyrin, and their subcellular distribution on dentate granule cells was studied by means of confocal laser scanning microscopy (CLSM). The synaptic versus extrasynaptic localization of these subunits was inferred by quantitative analysis of the frequency of colocalization of various subunits with synaptic markers in high-resolution images. GAD65 immunoreactive clusters colocalized with 26.24+/-0.86% of the alpha1 subunit immunoreactive clusters and 32.35+/-1.49% of the gamma2 subunit clusters. In contrast, only 1.58+/-0.13% of the alpha4 subunit immunoreactive clusters and 1.92+/-0.15% of the delta subunit clusters colocalized with the presynaptic marker GAD65. These findings were confirmed by studying colocalization with immunoreactivity of a postsynaptic marker, gephyrin, which colocalized with 27.61+/-0.16% of the alpha1 subunit immunoreactive clusters and 23.45+/-0.32% of the gamma2 subunit immunoreactive clusters. In contrast, only 1.90+/-0.13% of the alpha4 subunit immunoreactive clusters and 1.76+/-0.10% of the delta subunit clusters colocalized with gephyrin. These studies demonstrate that a subset of alpha1 and gamma2 subunit clusters colocalize with synaptic markers in hippocampal dentate granule cells. Furthermore, all four subunits, alpha1, alpha4, gamma2, and delta, are present in the extrasynaptic locations. 相似文献
11.
Combined serotonin (5-HT)(2A) and dopamine (DA) D(2) blockade has been shown to contribute to the ability of atypical antipsychotic drugs (APDs) to increase DA release in rat medial prefrontal cortex (mPFC). We provide additional support for this hypothesis by examining the effect of the selective 5-HT(2A) antagonist M100907 plus haloperidol, a potent D(2) antagonist APD, on DA release in the mPFC and nucleus accumbens (NAC). Haloperidol (0.01-1.0 mg/kg) produced an inverted U-shaped increase in DA release in the mPFC, with a significant increase only at 0.1 mg/kg. Haloperidol (0.1 and 1.0 mg/kg) significantly increased DA release in the NAC. M100907 (0.1 mg/kg) by itself had no effect on DA release in either region. This dose of M100907 potentiated the ability of low (0.01-0.1 mg/kg), but not high dose (0.3-1.0 mg/kg) haloperidol to increase mPFC DA release, whereas it abolished the effect of both 0.1 and 1.0 mg/kg haloperidol on NAC DA release. These results suggest that the relatively higher ratio of 5-HT(2A) to D(2) antagonism may contribute to the potentiation of haloperidol-induced mPFC DA release, whereas 5-HT(2A) antagonism can diminish haloperidol-induced NAC DA release, even when combined with extensive D(2) antagonism, which may not be synergistic with 5-HT(2A) antagonism in the mPFC. 相似文献
12.
Primary cultures of neuronal networks grown on microelectrode arrays were used to quantify acute effects of fluoxetine (Prozac) on spontaneous spike and burst activity. For frontal cortex cultures, fluoxetine showed consistent inhibitory effects and terminated activity at 10-16 microM. IC(50) mean+/-S.E. for spike rates was 5.4+/-0.7 microM (n=15). For auditory cortex cultures, fluoxetine caused excitation at 1-10 microM, initial inhibition at 15 microM, and activity cessation at 20-25 microM. The spike rate IC(50) was 15.9+/-1.0 microM (n=11). Fluoxetine did not change the action potential waveform shape. However, at high concentrations, it caused total cessation of spike activity on all channels. The inhibition caused by fluoxetine was reversible for both tissues. Based on the results, we conclude that cultures showed repeatable, concentration-dependent sensitivities to fluoxetine but demonstrated tissue-specific responses for frontal and auditory cortex networks. These responses may not be due to the interference with serotonin reuptake, but may be due to a secondary effect on ionic channels. 相似文献
13.
Serotonin 1A (5HT1A) receptor agonists have shown neuroprotective properties in different models of central nervous system injury. Activation of neuronal 5HT1A receptors appears to be involved in the neuroprotective effects. It remains to be elucidated if astroglial cells are responsive to the 5HT1A neuroprotective effects. The participation of astroglial S100B trophic factor has been proposed since 5HT1A activation leads to S100B release and nanomolar concentration level of this molecule showed pro-survival activity in neuronal cultures. Using the cortical devascularization model (CD; unilateral pial disruption), a procedure that results in localized ischemia without producing direct physical damage to brain tissue, we tested the effects of a full 5HT1A agonist, 8-OH-DPAT, or the antagonist WAY-100635 on cortical neuronal survival, astroglial cell response and S100B expression. Wistar rats were subjected to CD lesion which consisted of a craniotomy followed by physical damage to the underlying pial blood vessels. Two and twenty-four hours after the CD lesion, animals received intraperitoneally 8-OH-DPAT (1 mg/kg), WAY-100635 (1 mg/kg) or vehicle (sterile saline). At 3, 7 or 14 days post-lesion, animals were sacrificed and their brains processed for immunohistochemistry to detect GFAP, vimentin, MAP-2, S100B and nuclear Hoechst staining. S100B level in the brain cortex and serum was quantified by an ELISA assay. Serum S100B was considered an index of S100B release. 8-OH-DPAT treatment reduced neuronal death, dendrite loss, astroglial hypertrophy and hyperplasia. In contrast, WAY-100635 treatment increased these parameters of damage. S100B intracellular immunoreactivity in astrocytes and total S100B level showed long-lasting changes after the CD lesion and subsequent treatments depending on the 5HT1A activity. The level of serum S100B was increased in 8-OH-DPAT-treated animals. Increased damage observed in WAY-100635-treated animals supports the hypothesis that the protective 8-OH-DPAT action may be mediated by specific 5HT1A receptors. The reduction in astroglial hypertrophy and hyperplasia as well as long-term changes in S100B immunoreactivity and increased S100B release that we observed allows us to hypothesize that astroglial cells may play an important role in 5HT1A-mediated neuroprotection. 相似文献
14.
Petersson M Diaz-Cabiale Z Angel Narváez J Fuxe K Uvnäs-Moberg K 《Brain research》2005,1049(2):234-239
Oxytocin induces long-term changes in, for example, blood pressure, spontaneous motor activity and corticosterone levels in rats. Previous studies in male rats have suggested a role for alpha(2)-adrenoceptors within the central nervous system in these effects. The aim of the present study was to investigate if oxytocin treatment in female rats would influence alpha(2)-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract (NTS). For this purpose, female ovariectomized (OVX) rats were treated with oxytocin (1 mg/kg s.c.) or saline once a day for 10 days. Rats were decapitated 5 days after the last injection, and brains and plasma were collected. Quantitative receptor autoradiography for characterization of high affinity alpha(2)-adrenoceptor agonist binding and radioimmunoassay for corticosterone were performed. Oxytocin increased the B(max) values of the alpha(2)-adrenoceptor agonist [3H]UK14.304 binding sites significantly in all the analyzed areas (P<0.05). K(d) values were unchanged. Plasma levels of corticosterone were significantly decreased in the oxytocin-treated rats (P<0.05). These findings are in further support of an interaction between oxytocin receptors and alpha(2)-adrenoceptors and show that oxytocin treatment may increase alpha(2)-adrenoceptor recognition probably leading to an increase in alpha(2)-adrenoceptor signaling in several parts of the brain. 相似文献
15.
Neuronal nitric oxide synthase (nNOS)-containing neurons and axon terminals were examined in the rat somatosensory and temporal neocortex, in the CA3/a-c areas of Ammon's horn and in the hippocampal dentate gyrus. In these areas, only nonpyramidal neurons were labeled with the antibody against nNOS. Previous observations suggested that all nNOS-positive nonpyramidal cells are GABAergic local circuit neurons, which form exclusively symmetric synapses. In agreement with this, nNOS-positive axon terminals in the hippocampal formation formed symmetric synapses exclusively with dendritic shafts. In the neocortex, in contrast, in addition to the nNOS-positive axon terminals that formed synapses with unlabeled spiny and aspiny dendrites and with nNOS-positive aspiny dendrites, a small proportion of the nNOS-positive axon terminals formed symmetric synapses with dendritic spines. These results suggest that nNOS-positive local circuit neurons form a distinct group of axo-dendritic cells displaying slightly different domain specificity in the archi- and neocortex. However, nNOS-positive cells show no target selectivity, because they innervate principal cells and local circuit neurons. Afferents to the NOS-positive cells display neither domain nor target selectivity, because small unlabeled terminals formed synapses with both the soma or dendrites of nNOS-positive neurons and an adjacent unlabeled dendrite or spine in both the hippocampal formation and in neocortex. 相似文献
16.
This study was designed to assess the involvement of 5-HT1B receptors within the ventral tegmental area (VTA) in the regulation of mesolimbic dopaminergic transmission. Dual-probe microdialysis was performed in freely moving adult Sprague-Dawley rats with one probe within the VTA and the other within the ipsilateral nucleus accumbens (NACC). Drugs were administered into the VTA via retrograde dialysis. Dialysates from both the VTA and the NAC were collected for determination of dopamine (DA) and gamma-aminobutyric acid (GABA) by high-performance liquid chromatography with electrochemical detection. Intra-tegmental infusion of CP 93129 (20, 40, and 80 microM), a 5-HT1B receptor agonist, increased extracellular DA concentrations in a concentration-dependent manner not only in the NACC but also in the VTA, indicating increased mesolimbic DA neuron activity. Administration of CP 93129 at 80 microM into the VTA also significantly decreased extracellular GABA concentrations in this region. Co-infusion of the 5-HT1B receptor antagonist SB 216641 (10 microM), but not the 5-HT1A receptor antagonist WAY 100635 (10 microM) or the 5-HT1D/1A receptor antagonist BRL 15572 (10 microM), antagonized not only the effects of intra-tegmental CP 93129 (80 microM) on VTA DA and NAC DA but also on VTA GABA. The results suggest that activation of VTA 5-HT1B receptors increases mesolimbic DA neuron activities. The increased DA neuron activity may be associated, at least in part, with the 5-HT1B receptor-mediated inhibition of VTA GABA release. 相似文献
17.
Isatin is an endogenous indole, which has a distinct and discontinuous distribution in the brain and exhibits a wide range of physiological and pharmacological effects. In the present study, we have demonstrated that atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) inhibited [3H]isatin binding to rat brain sections and isolated membrane fractions. Isatin itself antagonised not only natriuretic peptide receptor type A (NPR-A) (ANP-stimulation of guanylyl cyclase) but also NPR-C (ANP and CNP mediated inhibition of adenylyl cyclase) signalling. These results suggest that some [3H]isatin binding in the brain may be to NPR-A and NPR-C. Competitive interactions between isatin and natriuretic peptides and their receptors give a possible explanation of the known anxiogenic effect of low doses of isatin, interacting at NPR-A, and the sedative effects of higher doses, antagonising respectively the anxiolytic effect of ANP and the anxiogenic effect of CNP. 相似文献
18.
During early development, adenosine contributes to the occurrence of respiratory depression and recurrent apneas. Recent physiological studies indicate that GABAergic mechanisms may be involved in this inhibitory action of adenosine, via their A(2A) receptors. In the present study, in situ hybridization with ribonucleotide probes for A(2A) receptor (A(2A)R) mRNA was combined with the immunolabeling technique for parvalbumin and transneuronal retrograde tracing method using green fluorescent protein expressing pseudorabies virus (GFP-PRV) to (1) characterize age-dependent changes in the expression of adenosine A(2A)Rs mRNA in brain stem regions where GABAergic neurons are located; (2) determine whether GABA-containing neurons express A(2A)R mRNA traits, and (3) identify whether bulbospinal GABAergic neurons projecting to phrenic nuclei contain A(2A)R mRNA. Results revealed expression of A(2A) receptors in regions of medulla oblongata containing GABAergic neurons, namely in the ventral aspect of the medulla, within the B?tzinger region and caudal to it, the gigantocellular reticular nucleus, midline neurons and the caudal ventrolateral medulla oblongata. Furthermore, a subpopulation of identified GABAergic neurons, projecting to the phrenic motor nuclei, possess A(2A)R mRNA. It is concluded that adenosine A(2A)Rs expressed by GABAergic neurons are likely to play a role in mediating adenosine-induced respiratory depression. 相似文献
19.
Corticotropin-releasing factor (CRF)-related peptides can modulate stress-related physiology and behavior. Some of these effects may be mediated via the CRF type 2 (CRF2) receptor on serotonergic neurons in the dorsal raphe nucleus (DR). To determine if the CRF2 receptor agonist urocortin 2 (Ucn 2) increases c-Fos expression in rat DR serotonergic neurons via actions on CRF2 receptors, we gave intracerebroventricular (icv) injections of mouse Ucn 2 after icv injections of either saline or the CRF2 receptor antagonist antisauvagine-30 (ASV-30). Double immunostaining methods for c-Fos and tryptophan hydroxylase revealed that, consistent with previous studies, mouse Ucn 2 increased c-Fos expression in tryptophan hydroxylase immunostained neurons in the middle and caudal parts (-8.18, -8.54, and -9.16 mm bregma) of the dorsal subdivision of the dorsal raphe nucleus 2 h after drug treatment. Pre-treatment with ASV-30 blocked these effects. Mouse Ucn 2 had no effect on c-Fos expression within the median raphe nucleus, consistent with the hypothesis that Ucn 2 has specific actions on an anatomically and functionally distinct subset of serotonergic neurons via activation of CRF2 receptors. These findings are also consistent with the hypothesis that Ucn 2, or another CRF-related neuropeptide acting at CRF2 receptors, modulates physiological and behavioral responses to stress-related stimuli via actions on a specific subset of serotonergic neurons within the dorsal raphe nucleus. 相似文献
20.
Urocortin 2 increases c-Fos expression in topographically organized subpopulations of serotonergic neurons in the rat dorsal raphe nucleus 总被引:1,自引:0,他引:1
Corticotropin-releasing factor (CRF)-related peptides modulate stress-related physiology and behavior. Some of the physiological and behavioral effects of CRF-related peptides may be due to actions on CRF type 2 (CRF2) receptors modulating serotonergic systems in the dorsal raphe nucleus (DR). To determine if CRF2 receptor activation has effects on serotonergic neurons in the DR in conscious behaving rats, we gave intracerebroventricular (icv) injections of the selective CRF2 receptor agonist urocortin 2 (0, 0.01, 0.1, or 1.0 mug in 2 microl saline) to adult male Wistar rats and quantified c-Fos expression in topographically organized subpopulations of serotonergic neurons within the DR. In addition, home cage behaviors were recorded for 30 min prior to drug treatment and for 2 h following drug treatment. Two hours following drug treatment, rats were anesthetized, transcardially perfused with fixative, and brain tissues were processed for immunohistochemistry. Urocortin 2, in the absence of any effects on most behavioral endpoints studied, consistently increased c-Fos expression in subpopulations of serotonergic neurons identified by either tryptophan hydroxylase or serotonin immunostaining within specific subdivisions of the DR, particularly the dorsal region of the mid-rostrocaudal and caudal DR (-7.64, -8.18, -8.54, and -9.16 mm bregma). These studies demonstrate that urocortin 2 has selective actions on a subset of DR serotonergic neurons. Urocortin 2 actions on serotonergic systems described here may contribute to delayed behavioral effects of urocortin 2 described previously, including orexigenic, locomotor, and anxiety-related effects in a variety of behavioral tests as well as potentiation of conditioned fear and induction of escape deficits in a model of learned helplessness. 相似文献