首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Deoxycytidine (dCyd) kinase has been purified to homogeneity from human leukemic spleen, and the capacity of the enzyme to phosphorylate 2',3'-dideoxynucleoside (ddN) analogs that are clinically effective inhibitors of human immunodeficiency virus (HIV) replication was evaluated. Cytosine-containing ddN analogs, such as 2',3'-dideoxycytidine, 2',3'-dideoxy-2',3'-dehydrocytidine, and cytallene, were efficiently phosphorylated by dCyd kinase, while no phosphorylation of purine-containing ddN analogs was detected. dCyd kinase was completely inactive toward 2',3'-dideoxyadenosine (ddAdo), 2',3'-dideoxyinosine, 2',3'-dideoxyguanosine, and adenallene, although it was capable of phosphorylating both 2'-deoxyadenosine (dAdo) and 2'-deoxyguanosine (dGuo). The abilities of wild type and mutant human T lymphoblastoid CEM cells to accumulate ddAdo in situ and in vitro were also ascertained. Comparison of the abilities of intact wild type CEM cells and derivatives deficient in nucleoside transport, dCyd kinase, and/or adenosine (Ado) kinase to accumulate [3H]ddAdo-derived radioactivity revealed no significant differences among the wild type and mutant strains. However, ddAdo phosphorylating activity was decreased in extracts from Ado kinase-deficient cells but not in lysates prepared from cells genetically deficient in dCyd kinase activity. In comparative growth rate experiments, wild type, nucleoside transport-deficient, and dCyd kinase-deficient CEM cells were equally sensitive to ddAdo toxicity, while, interestingly, a deficiency in Ado kinase correlated with a 5-fold decreased growth sensitivity to the purine ddN. Insertion of an adenine phosphoribosyltransferase deficiency into the CEM cell lines did not influence ddAdo toxicity or incorporation rate. These results imply that Ado kinase may be an important factor in ddAdo phosphorylation by CEM cells. Furthermore, these studies demonstrate that cytosine- and purine-containing ddNs are transported and activated by independent pathways and, therefore, have important implications for anti-HIV therapy in that pyrimidine and purine ddNs might be used in combination for the treatment of acquired immunodeficiency syndrome.  相似文献   

4.
5.
Recently, an entirely new class of bicyclic nucleoside analogs (BCNAs) was found to display exquisite potency and selectivity as inhibitors of varicella-zoster virus (VZV) replication in cell culture. A striking difference in their ability to convert the BCNAs to their phosphorylated derivatives was observed between the VZV-encoded thymidine kinase (TK) and the very closely related herpes simplex virus type 1 (HSV-1) TK. Whereas VZV TK efficiently phosphorylated the BCNAs, HSV-1 TK was unable to do so. In addition, the thymidylate (dTMP) kinase activity of VZV TK further converted BCNA-5'-MP to BCNA-5'-DP. The BCNAs (or their phosphorylated derivatives) were not a substrate for cytosolic TK, mitochondrial TK, or cytosolic dTMP kinase. Human erythrocyte nucleoside diphosphate (NDP) kinase was unable to phosphorylate the BCNA 5'-diphosphates to BCNA 5'-triphosphates. Under the same experimental conditions, the anti-herpetic (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) derivative was efficiently converted to BVDU-MP and BVDU-DP by both VZV TK and HSV-1 TK and further, into BVDU-TP, by NDP kinase. Our observations may account for the unprecedented specificity of BCNAs as anti-VZV agents.  相似文献   

6.
PSI-353661, a phosphoramidate prodrug of 2′-deoxy-2′-fluoro-2′-C-methylguanosine-5′-monophosphate, is a highly active inhibitor of genotype 1a, 1b, and 2a HCV RNA replication in the replicon assay and of genotype 1a and 2a infectious virus replication. PSI-353661 is active against replicons harboring the NS5B S282T or S96T/N142T amino acid alterations that confer decreased susceptibility to nucleoside/tide analogs as well as mutations that confer resistance to non-nucleoside inhibitors of NS5B. Replicon clearance studies show that PSI-353661 was able to clear cells of HCV replicon RNA and prevent a rebound in replicon RNA. PSI-353661 showed no toxicity toward bone marrow stem cells or mitochondrial toxicity. The metabolism to the active 5′-triphosphate involves hydrolysis of the carboxyl ester by cathepsin A (Cat A) and carboxylesterase 1 (CES1) followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the elimination of phenol and the alaninyl phosphate metabolite, PSI-353131. Histidine triad nucleotide-binding protein 1 (Hint 1) then removes the amino acid moiety, which is followed by hydrolysis of the methoxyl group at the O6-position of the guanine base by adenosine deaminase-like protein 1 (ADAL1) to give 2′-deoxy-2′-fluoro-2′-C-methylguanosine-5′-monophosphate. The monophosphate is phosphorylated to the diphosphate by guanylate kinase. Nucleoside diphosphate kinase is the primary enzyme involved in phosphorylation of the diphosphate to the active triphosphate, PSI-352666. PSI-352666 is equally active against wild-type NS5B and NS5B containing the S282T amino acid alteration.  相似文献   

7.
Amdoxovir [(-)-beta-D-2,6-diaminopurine dioxolane, DAPD], the prodrug of dioxolane guanosine (DXG), is currently in Phase I/II clinical development for the treatment of HIV-1 infection. In this study, we examined the phosphorylation pathway of DXG using 15 purified enzymes from human (8), animal (6), and yeast (1) sources, including deoxyguanosine kinase (dGK), deoxycytidine kinase (dCK), high Km 5'-nucleotidase (5'-NT), guanylate (GMP) kinase, nucleoside monophosphate (NMP) kinase, adenylate (AMP) kinase, nucleoside diphosphate (NDP) kinase, 3-phosphoglycerate (3-PG) kinase, creatine kinase, and pyruvate kinase. In addition, the metabolism of 14C-labeled DXG was studied in CEM cells. DXG was not phosphorylated by human dCK, and was a poor substrate for human dGK with a high Km (7 mM). Human 5'-NT phosphorylated DXG with relatively high efficiency (4.2% of deoxyguanosine). DXG-MP was a substrate for porcine brain GMP kinase with a substrate specificity that was 1% of dGMP. DXG-DP was phosphorylated by all of the enzymes tested, including NDP kinase, 3-PG kinase, creatine kinase, and pyruvate kinase. The BB-isoform of human creatine kinase showed the highest relative substrate specificity (47% of dGDP) for DXG-DP. In CEM cells incubated with 5 microM DXG for 24 h, 0.015 pmole/10(6) cells (approximately 7.5 nM) of DXG-TP was detected as the primary metabolite. Our study demonstrated that 5'-nucleotidase, GMP kinase, creatine kinase, and NDP kinase could be responsible for the activation of DXG in vivo.  相似文献   

8.
The multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) is studied as a candidate suicide gene for applications in combined gene/chemotherapy of cancer. We have created an engineered Dm-dNK nucleoside kinase that is targeted to the mitochondrial matrix. The enzyme was expressed in a thymidine kinase 1-deficient osteosarcoma cell line, and the sensitivity of the cells to cytotoxic nucleoside analogs was determined when the enzyme was targeted to either the nucleus or the mitochondrial matrix. Although the total deoxythymidine (dThd) phosphorylation activity was similar in cells expressing Dm-dNK in the nucleus or in the mitochondria, the cells expressing the enzyme in the mitochondria showed higher sensitivity to the antiproliferative activity of several pyrimidine nucleoside analogs, such as (E)-5-(2-bromovinyl)-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, and 5-fluoro-2'-deoxyuridine. Labeling studies using [3H]dThd showed that the cells expressing the mitochondrial enzyme had an increased incorporation of [3H]dThd into DNA, shown to be due to a higher [3H]dTTP specific activity of the total dTTP pool in the cells in which Dm-dNK was targeted to the mitochondria. The difference in the specific activity of the dTTP pool is a result of different contributions of the de novo and the salvage pathways for the dTTP synthesis in transduced cells. In summary, these findings suggest that mitochondrial targeting of Dm-dNK facilitates nucleoside and nucleoside analog phosphorylation and could be used as a strategy to enhance the efficacy of nucleoside analog phosphorylation and concomitantly their cytostatic potential.  相似文献   

9.
2',3'-Dideoxyinosine (ddlno) is a potent and selective inhibitor of human immunodeficiency virus in human lymphoid cells and monocytes/macrophages. Earlier studies [J. Biol. Chem. 263:15354 (1988)] showed that anabolism of ddlno in human lymphoid cells is mediated via an initial step of phosphorylation and subsequent amination to dideoxy-AMP via adenylosuccinate synthetase/lyase. Evidence was obtained that neither adenosine kinase nor deoxycytidine kinase is involved in the phosphorylation of this compound in human lymphoid cells. We now find that, in the presence of MgCl2, KCl, and inosine-5'-monophosphate as phosphate donor, purified cytosolic 5'-nucleotidase catalyzed the phosphorylation of ddlno. Although not phosphate donors, ATP, diadenosine tetraphosphate, and glycerate-2,3-bisphosphate stimulate this phosphorylation by the nucleotidase 4-5-fold. In addition to ddlno, the antiviral nucleoside analogs 2',3'-dideoxyguanosine and carbovir were substrates for this enzyme. The relative phosphorylation of these compounds varied with the concentration of the phosphate donor IMP. Approximate Km values of the nucleotidase for inosine, ddlno, dideoxyguanosine, and carbovir were, respectively, 3.4, 0.5, 0.9, and 1.7 mM. Although the substrate activity of dideoxynucleosides is inefficient, it appears likely that this nucleotidase is responsible for the metabolism of these compounds to their active nucleotides, yielding antiviral activity in human lymphoid cells.  相似文献   

10.
11.
2',3'-Dideoxyguanosine (ddGuo) is a selective inhibitor of the replication of human immunodeficiency virus in vitro and the most active antihepadnavirus nucleoside analog known in vitro and in vivo, in a Peking duck model. However, the exact route by which this and related guanosine analogs are anabolized to their putative active metabolites in target cells is controversial. The anabolic pathway for the activation of ddGuo was investigated with the use of mutant human lymphoid CCRF-CEM and WI-L2 cell lines deficient in known nucleoside kinases. Uptake of ddGuo by human lymphoid cells and subsequent conversion to mono-, di-, and triphosphorylated metabolites is dose dependent and occurs proportionately to the exogenous concentration of drug. Studies with kinase-deficient CCRF-CEM and WI-L2 mutants revealed that at least two different routes of metabolism are operating in these cells to initiate the phosphorylation of ddGuo to its active dideoxynucleotides, one being deoxycytidine (dCyd) kinase and the other a cytosolic-5'-nucleotidase acting in the anabolic direction as a phosphotransferase. The evidence for this included 1) a lower but significant accumulation of drug anabolites in dCyd kinase-deficient mutants, 2) a lack of cross-resistance of the kinase-deficient mutants to growth inhibition by ddGuo, compared with that by the related analogs dideoxycytidine and arabinosylcytosine, known substrates for dCyd kinase, and 3) identification of different phosphorylation activities for ddGuo in extracts of wild-type cells and kinase-deficient mutants. Knowledge of the enzyme systems involved in anabolism of ddGuo analogs should be important for both new drug design and optimal therapeutic application.  相似文献   

12.
13.
The reaction of NDP kinase was studied in vitro with several antiviral derivatives, using kinetic steady state and presteady state analysis. The enzyme is highly efficient with natural nucleotides but most of the analogs are slow substrates. The catalytic efficiency, also related to the affinity of the analog, is mainly dependent on the presence of a 3'-OH group on the ribose moiety.  相似文献   

14.
The phosphoramidate triester prodrugs of anti-human HIV 2', 3'-dideoxynucleoside analogs (ddN) represent a convenient approach to bypass the first phosphorylation to ddN 5'-monophosphate (ddNMP), resulting in an improved formation of ddN 5'-triphosphate and, hence, higher antiviral efficacy. Although phosphoramidate derivatization markedly increases the anti-HIV activity of 2',3'-didehydro-2', 3'-dideoxythymidine (d4T) in both wild-type and thymidine kinase-deficient CEM cells, the concept is far less successful for the 3'-azido-2',3'-dideoxythymidine (AZT) triesters. We now investigated the metabolism of triester prodrugs of d4T and AZT using pure enzymes or different biological media. The efficiency of the first activation step, mediated by carboxylesterases, consists of the formation of the amino acyl ddNMP metabolite. The efficiency of this step was shown to be dependent on the amino acid, alkyl ester, and ddN moiety. Triesters that showed no conversion to the amino acyl ddNMP accumulated as the phenyl-containing intermediate and had poor, if any, anti-HIV activity. In contrast to the relative stability of the triesters in human serum, carboxylesterase-mediated cleavage of the prodrugs was found to be remarkably high in mouse serum. The subsequent conversion of the amino acyl ddNMP metabolite to ddNMP or ddN was highest in rat liver cytosolic enzyme preparations. Although L-alaninyl-d4TMP was efficiently converted to d4TMP, the main metabolite formed from L-alaninyl-AZTMP was the free nucleoside (AZT), thus explaining why d4T prodrugs, but not AZT prodrugs, retain anti-HIV activity in HIV-infected thymidine kinase-deficient cell cultures. The rat liver phosphoramidase responsible for the formation of ddNMP was shown to be distinct from creatine kinase, alkaline phosphatase, and phosphodiesterase.  相似文献   

15.
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mutation at amino acid position 167 was constructed. Compared with wild-type HSV-1 TK, the purified mutant HSV-1 TK(A167Y) enzyme was heavily compromised in phosphorylating pyrimidine nucleosides such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and the natural substrate dThd, whereas its ability to phosphorylate the purine nucleoside analogs ganciclovir (GCV) and lobucavir was only reduced approximately 2-fold. Moreover, a markedly decreased competition of natural pyrimidine nucleosides (i.e., thymidine) with purine nucleoside analogs for phosphorylation by HSV-1 TK(A167Y) was observed. Human osteosarcoma cells transduced with the wild-type HSV-1 TK gene were extremely sensitive to the cytostatic effects of antiherpetic pyrimidine [i.e., (E)-5-(2-bromovinyl)-2'-deoxyuridine] and purine (i.e., GCV) nucleoside analogs. Transduction with the HSV-1 TK(A167Y) gene sensitized the osteosarcoma cells to a variety of purine nucleoside analogs, whereas there was no measurable cytostatic activity of pyrimidine nucleoside analogs. The unique properties of the A167Y mutant HSV-1 TK may give this enzyme a therapeutic advantage in an in vivo setting due to the markedly reduced dThd competition with GCV for phosphorylation by the HSV-1 TK.  相似文献   

16.
Forty-eight acyclic nucleoside phosphonates (putative prodrugs of acyclic nucleoside triphosphate inhibitors of DNA replication) have been evaluated for in vitro antiplasmodial activity. Only certain purine derivatives with a hydroxyl group attached to the acyclic sugar moiety displayed antiplasmodial activity. The two most active analogs were (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine ((S)-HPMPA, IC50=0.18+/-0.07 microM) and (S)-3-deaza-HPMPA (IC50=0.29+/-0.08 microM). Their cyclic derivatives, containing an ester bond between the phosphonate and the hydroxyl group, were slightly less active. All tested compounds that lacked the hydroxyl group, including potent antiretrovirus analogs such as 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and the (S)-HPMPA derivatives (R)-PMPA and (S)-FPMPA, did not show any activity, even at very high concentrations ( >250 microM). Similarly, pyrimidine analogs of (S)-HPMPA, such as (S)-HPMPT, (S)-HPMPU and the anti-herpesvirus analog (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine ((S)-HPMPC), were devoid of any antiplasmodial activity. In addition, 11 acyclic nucleoside (non-phosphorylated) analogs--which in contrast to the acyclic nucleoside phosphonates require the presence of a monophosphorylating enzyme for the first activation step--were tested. None of them inhibited the growth of the parasite. In short three chemical entities seem to be imperative for antiplasmodial activity: a purine base, a hydroxyl group in the acyclic side chain and a phosphonate group terminating this chain.  相似文献   

17.
Deoxycytidine analogs are an important class of clinically active antiviral and anticancer agents. The stepwise phosphorylation of these analogs to triphosphate metabolites is crucial for biological action. Human UMP/CMP kinase (UMP/CMPK; cytidylate kinase; EC 2.7.4.14) is thought to be responsible for phosphorylation of UMP, CMP, and dCMP and may also play an important role in the activation of pyrimidine analogs. However, no evidence has verified this notion in intact cells. In this study we explored the functional roles of UMP/CMPK in natural pyrimidine synthesis and metabolism of deoxycytidine analogs, as well as 5-FU in HeLa S3 and HCT8 cells. The amounts of UMP/CMPK protein in different cell lines correlated with UMP, CMP, and dCMP kinase activities and amounts of UMP/CMPK RNA. Modulation of UMP/CMPK by overexpression or down-regulation had no impact on natural pyrimidine nucleotides and cell growth. However, down-regulating UMP/CMPK expression by siRNA led to a decrease in the formation of the triphosphate metabolites, resulting in cellular resistance to these analogs. More diphosphate and triphosphate metabolites of deoxycytidine analogs were detected and cellular sensitivity to these agents was increased in the UMP/CMPK-overexpressing cells. This study indicates that the second step enzyme (UMP/CMPK) is responsible for the phosphorylation of pyrimidine analogs and also has an impact on cellular sensitivity to these analogs in those cell lines.  相似文献   

18.
Modifications in the sugar moiety of pyrimidine nucleosides may affect their ability to function as permeants of the mouse erythrocyte nucleoside transporter. In this investigation, a number of synthetic uracil and thymine nucleosides which differ from the physiological nucleosides, uridine, deoxyuridine and thymidine, through structural changes at the 2'- and 3'-positions were studied. Interaction of the analogs with the transporter has been assessed in terms of their affinities for an external site on the transporter as well as their abilities to effect trans-acceleration of thymidine efflux. 1-(beta-D-Arabinofuranosyl) uracil (araU) and 1-(beta-D-arabinofuranosyl)thymine (araT) were comparable to thymidine as permeants while nucleosides in which the 3'-hydroxyl was replaced with hydrogen or a halogen had a decreased affinity for the transporter. 3'-Fluoro-3'-deoxy-araU weakly accelerated thymidine efflux while its ribo-isomer and the other 3'-halogeno-3' deoxy-arabino analogs as well as dideoxythymidine inhibited efflux. The absence of 2'- and 3'-carbons in acyclothymidine and acyclouridine strongly decreased the affinities of these nucleosides for the transporter; efflux of thymidine was not accelerated in the presence of these compounds. The conformationally constrained cyclic nucleoside 2,2'-anhydro-araU had a very low affinity for the transporter, and influx of the radiolabeled compound could not be demonstrated. The results suggest that modification at the 3'-position, loss of a portion of the sugar ring, and lack of conformational flexibility are factors which decrease the abilities of some pyrimidine nucleosides to function as permeants. It is suggested that combined effects of substituents which play a role in determining nucleoside conformation should be considered in assessing structural requirements for permeants of the transporter.  相似文献   

19.
The inhibitor and substrate specificities of deoxythymidine (dThd) kinase purified from herpes simplex virus (HSV Type 1) were studied. A number of nucleosides and nucleoside analogs were phosphorylated by the virus coded enzyme. These included several compounds structurally related to 9-(2-hydroxyethoxymethyl)guanine (acyclovir), a potent inhibitor of HSV replication. Some contained guanine with 9-substituents differing from that of acyclovir by methylene additions, methylene and thioether substitutions for the ether oxygen, and branching on the distal side of the ether oxygen. Others were various 2-substituted 6-hydroxypurines with the 9-(2-hydroxyethoxymethyl) substituent. A limitation of the specificity of the enzyme with guanine derivatives was the lack of phosphorylation of any derivative with an acyclic moiety branched on the proximal side of the ether oxygen. Many of the compounds that were phosphorylated were subsequently found to inhibit HSV replication. Such compounds apparently inhibited HSV replication via the same route of activation previously described for acyclovir [G. B. Elion, P. A. Furman, J. A. Fyfe, P. de Miranda, L. Beauchamp and H. J. Schaeffer, Proc. natn. Acad. Sci. U.S.A.74, 5716 (1977)]. Moreover, several compounds not phosphorylated by the enzyme did not inhibit replication. However, some other acyclic nucleoside analogs that were phosphorylated were not good antivirals, indicating that phosphorylation catalyzed by the HSV dThd kinase was not sufficient for inhibition of viral replication to occur. These results emphasize the importance of the specificity of cellular kinases and the HSV DNA polymerase to the mechanism of antiviral activity. The dThd kinase from Vero cells was also purified. With this host cell enzyme, kinetic constants of known antiviral compounds were determined and compared to those of dThd (relative Vmax; km): dThd (100; 1.3 μM), 5-iodo-2′-deoxyuridine (87; 1.8 μM), 5-trifluoromethyl-2′-deoxyuridine (91; 1.2 μM), 5-bromo-2′-deoxycytidine (5; 580 μM), and 9-β-d-arabinofuransoylthymine (23; 2300 μM). None of the purine acyclic nucleoside analogs tested (at 1000 μM) was detectably phosphorylated by the Vero cell enzyme, and all had apparent Ki values >300 μM. The phosphorylation catalyzed by host cell dThd kinase correlated with the toxicity of some pyrimidine nucleoside analogs.  相似文献   

20.
Nucleoside monophosphate kinases have an important role in the synthesis of nucleotides that are required for cellular metabolism. These enzymes are also important for the phosphorylation of nucleoside- and nucleotide analogs used in cancer and anti-viral therapy. We report the cDNA cloning and characterization of a 23 kDa guanylate kinase from Drosophila melanogaster (Dm-GUK). The predicted amino acid sequence was 58% identical to the human guanylate kinase and the enzyme was shown to phosphorylate GMP and dGMP with ATP as phosphate donor. The monophosphates of the deoxyguanosine analogs 2',2'-difluorodeoxyguanosine (dFdG) and 9-beta-D-arabinofuranosylguanine (araG) were also shown to be phosphorylated by the enzyme. We used the enzyme to reconstitute the complete in vitro three-step phosphorylation pathway for the conversion of dGuo and araG to the corresponding triphosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号