首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To examine the influence of ingesting a carbohydrate-electrolyte (CHO-E) solution on muscle glycogen use and intermittent running capacity after consumption of a carbohydrate (CHO)-rich diet. METHODS: Six male volunteers (mean +/- SD: age 22.7 +/- 3.4 yr; body mass (BM) 75.0 +/- 4.3 kg; V O2 max 60.2 +/- 1.6 mL x kg(-1) x min(-1)) performed two trials separated by 14 d in a randomized, crossover design. Subjects consumed either a 6.4% CHO-E solution or a placebo (PLA) in a double-blind fashion immediately before each trial (8 mL x kg(-1) BM) and at 15-min intervals (3 mL x kg(-1) BM) during intermittent high-intensity running to fatigue performed after CHO loading for 2 d. Muscle biopsy samples were obtained before exercise, after 90 min of exercise, and at fatigue. RESULTS: Subjects ran longer in the CHO-E trial (158.0 +/- 28.4 min) compared with the PLA trial (131.0 +/- 19.7 min; P < 0.05). There were no differences in muscle glycogen use for the first 90 min of exercise (approximately 2 mmol of glucosyl units per kilogram of dry matter (DM) per minute). However, there was a trend for a greater use in the PLA trial after 90 min (4.2 +/- 2.8 mmol x kg(-1) DM x min(-1)) compared with the CHO-E trial (2.5 +/- 0.7 mmol x kg(-1) DM x min(-1); P = 0.10). Plasma glucose concentrations were higher at fatigue in the CHO-E than in the PLA trial (P < 0.001). CONCLUSIONS: These results suggest that CHO-E ingestion improves endurance capacity during intermittent high-intensity running in subjects with high preexercise muscle glycogen concentrations. The greater endurance capacity cannot be explained solely by differences in muscle glycogen, and it may actually be a consequence of the higher plasma glucose concentration towards the end of exercise that provided a sustained source of CHO for muscle metabolism and for the central nervous system.  相似文献   

2.
PURPOSE: The purpose of the study was to evaluate the effects of carbohydrate (CHO) supplementation on whole-body and net muscle substrate use during 10 h of discontinuous exercise, simulating occupational settings in men and women. METHODOLOGY: Recreationally trained subjects (N = 7 males, N = 6 females) performed a graded exercise test on a treadmill (TM) and cycle ergometer (CE) to determine ventilatory threshold (VT) and V O2peak. In a double-blind, randomized crossover design, subjects received either CHO [20% maltodextrin (0.6 g.kg FFM.h)] or flavored placebo (PLA) drink each hour across 10 h of exercise. Exercise intensity was 71.3 +/- 3% and 72.4 +/- 4% VT for TM and CE, respectively. Hourly exercise included 9 min of upper-body ergometery, 19 min of cycling, and 20 min of treadmill walking, with a 1-min transition between modes, followed by a 10-min rest and feeding period. The protocol was selected to simulate arduous occupational settings. Vastus lateralis biopsies were obtained before and after exercise. Expired gases were collected every other hour to establish average rates of whole-body CHO and fat oxidation. Blood glucose (BG) was measured continuously. RESULTS: Whole-body CHO oxidation was maintained during CHO trial compared with the PLA trial. Net muscle glycogen use was 52% higher for the PLA trial (176.0 +/- 16.7, 117.0 +/- 20.9 and 164.5 +/- 11.0, 133.8 +/- 10.9 mmol.kg w.w. for PLA and CHO, respectively, P < 0.05). There were no significant sex-specific differences in glycogen use, whole-body substrate oxidation, or BG values. CONCLUSION: The ingestion of CHO during long-duration exercise decreases net muscle glycogen use while better maintaining whole-body carbohydrate oxidation, and potentially increasing performance in field settings. There are limited differences in sex-specific substrate oxidation.  相似文献   

3.
PURPOSE: This study aimed to investigate gender differences in i) pancreatic insulin secretory (beta-cell sensitivity) and whole body insulin sensitivity responses to an intravenous carbohydrate (CHO) load, and (ii) metabolic responses to exercise after both intravenous and oral CHO loads. METHODS: Seven untrained healthy men and seven age-, body mass-, and VO2max-matched women performed two trials. In one trial they cycled for 60 min at 50% VO2max, starting 60 min after ingestion of a carbohydrate-rich meal (ME trial). In the other trial, subjects were infused with 20% dextrose solution to maintain blood glucose concentration at approximately 8 mmol x L(-1) for 60 min (INF trial), then the infusion rate was maintained constant during the following 60 min while exercising at 50% VO2max. RESULTS: There was no gender effect on beta-cell sensitivity (serum insulin: 161 +/- 37 and 159 +/- 28 pmol x L(-1) for men and women, respectively) and whole body insulin sensitivity (155 +/- 24 and 135 +/- 29 mg x KgFFM(-1) x min(-1) per pmol x L(-1) x 100 for men and women, respectively). This may explain the similarity in glycemic, substrate oxidation and other metabolic responses to exercise after both intravenous and oral CHO loads in men and women. CONCLUSION: These results suggest that moderate exercise performed in the postprandial state presents a similar challenge to the ability of healthy, untrained men and women to perform exercise without a substantial decline in plasma glucose concentration below fasting values.  相似文献   

4.
High oxidation rates from combined carbohydrates ingested during exercise   总被引:3,自引:0,他引:3  
Studies that have investigated oxidation of a single carbohydrate (CHO) during exercise have reported oxidation rates of up to 1 g x min(-1). Recent studies from our laboratory have shown that a mixture of glucose and sucrose or glucose and fructose ingested at a high rate (1.8 g x min(-1)) leads to peak oxidation rates of approximately 1.3 g x min(-1) and results in approximately 20 to 55% higher exogenous CHO oxidation rates compared with the ingestion of an isocaloric amount of glucose. PURPOSE: The purpose of the present study was to examine whether a mixture of glucose, sucrose and fructose ingested at a high rate would result in even higher exogenous CHO oxidation rates (>1.3 g x min(-1)). METHODS: Eight trained male cyclists (VO2max: 64 +/- 1 mL x kg(-1) BM x min(-1)) cycled on three different occasions for 150 min at 62 +/- 1% VO2max and consumed either water (WAT) or a CHO solution providing 2.4 g x min(-1) of glucose (GLU) or 1.2 g x min(-1) of glucose + 0.6 g x min(-1) of fructose + 0.6 g x min(-1) of sucrose (MIX). RESULTS: High peak exogenous CHO oxidation rates were found in the MIX trial (1.70 +/- 0.07 g x min(-1)), which were approximately 44% higher (P < 0.01) compared with the GLU trial (1.18 +/- 0.04 g x min(-1)). Endogenous CHO oxidation was lower (P < 0.05) in MIX compared with GLU (0.76 +/- 0.12 and 1.05 +/- 0.06 g x min(-1), respectively). CONCLUSION: When glucose, fructose and sucrose are ingested simultaneously at high rates (2.4 g x min(-1)) during cycling exercise, exogenous CHO oxidation rates can reach peak values of approximately 1.7 g x min(-1) and estimated endogenous CHO oxidation is reduced compared with the ingestion of an isocaloric amount of glucose.  相似文献   

5.
PURPOSE: The purpose of this study was to examine the effect of high and low glycemic index (GI) carbohydrate (CHO) pre-exercise meals on endurance running capacity. METHODS: Eight active subjects (five male and three female) ran on a treadmill at approximately 70% VO2max to exhaustion on two occasions separated by 7 d. Three hours before the run after an overnight fast, each subject was given in a single-blind, random order, isoenergetic meal of 850+/-21 kcal (mean+/-SEM; 67% carbohydrate, 30% protein, and 3% fat) containing either high (HGI) or low (LGI) GI carbohydrate foods providing 2.0 g CHO.kg(-1) body weight. RESULTS: Ingestion of the HGI meal resulted in a 580% and 330% greater incremental area under the 3-h blood glucose and serum insulin response curves, respectively. Performance times were not different between the HGI and LGI trials (113+/-4 min and 111+/-5 min, respectively). During the first 80 min of exercise in the LGI trial, CHO oxidation was 12% lower and fat oxidation was 118% higher than in the HGI trial. Although serum insulin concentrations did not differ between trials, blood glucose at 20 min into exercise in the HGI trial was lower than that during the LGI trial at the same time (3.6+/-0.3 mmol.L(-1) vs 4.3+/-0.3 mmol.L(-1); P < 0.05). During exercise, plasma glycerol and serum free fatty acid concentrations were lower in the HGI trial than in the LGI trial. CONCLUSIONS: This results demonstrate that although there is a relative shift in substrate utilization from CHO to fat when a low GI meal is ingested before exercise compared with that for a high GI meal, there is no difference in endurance running capacity.  相似文献   

6.
PURPOSE: In this study, we examined the effects of greater than ad libitum rates of fluid intake on 2-h running performances. METHODS: Eight male distance runners performed three runs on a treadmill at 65% of peak oxygen uptake (VO2peak) for 90 min and then ran "as far as possible" in 30 min in an air temperature of 25 degrees C, a relative humidity of 55% and a wind speed of 13-15 km x h(-1). During the runs, the subjects drank a 6.9% carbohydrate (CHO)-electrolyte solution either ad libitum or in set volumes of 150 or 350 mL x 70 kg(-1) body mass (approximately 130 or 300 mL) every 15-20 min. RESULTS: Higher (approximately 0.9 vs 0.4 L x h(-1)) rates of fluid intake in the 350 mL x 70 kg(-1) trial than in the other trials had minimal effects on the subjects' urine production (approximately 0.1 L x h(-1)), sweat rates (approximately 1.2 L x h(-1)), declines in plasma volume (approximately 8%), and rises in serum osmolality (approximately 5 mosmol x L(-1)) and Na+ concentrations (approximately 7 mEq x L(-1)). A greater (approximately 1.0 vs 0.5 g x min(-1)) rate of CHO ingestion in the 350 mL x 70 kg(-1) trial than in the other trials also did not affect plasma concentrations of glucose (> or = 5 mmol x L(-1)) and lactate (approximately 3 mmol x L(-1)) during the performance runs. In all three performance runs, increases in running speeds from approximately 14 to 15-16 km x h(-1) and rises in exercise intensities from approximately 65% to 75% of VO2peak elevated plasma lactate concentrations from approximately 1.5 to 3 mmol x L(-1) and accelerated CHO oxidation from approximately 13 to 15 mmol x min(-1). The only effect of the additional intake of approximately 1.0 L of fluid in the 350 mL x 70 kg(-1) trial was to produce such severe gastrointestinal discomfort that two of the eight subjects failed to complete their performance runs. CONCLUSION: Greater rates of fluid ingestion had no measurable effects on plasma volume and osmolality and did not improve 2-h running performances in a 25 degrees C environment.  相似文献   

7.
The effect of carbohydrate mouth rinse on 1-h cycle time trial performance   总被引:1,自引:0,他引:1  
PURPOSE AND METHOD: To investigate the possible role of carbohydrate (CHO) receptors in the mouth in influencing exercise performance, seven male and two female endurance cyclists (VO(2max) 63.2 +/- 2.7 (mean +/- SE) mL.kg*(-1).min(-1)) completed two performance trials in which they had to accomplish a set amount of work as quickly as possible (914 +/- 40 kJ). On one occasion a 6.4% maltodextrin solution (CHO) was rinsed around the mouth for every 12.5% of the trial completed. On the other occasion, water (PLA) was rinsed. Subjects were not allowed to swallow either the CHO solution or water, and each mouthful was spat out after a 5-s rinse. RESULTS: Performance time was significantly improved with CHO compared with PLA (59.57 +/- 1.50 min vs 61.37 +/- 1.56 min, respectively, P = 0.011). This improvement resulted in a significantly higher average power output during the CHO compared with the PLA trial (259 +/- 16 W and 252 +/- 16 W, respectively, P = 0.003). There were no differences in heart rate or rating of perceived exertion (RPE) between the two trials (P > 0.05). CONCLUSION: The results demonstrate that carbohydrate mouth rinse has a positive effect on 1-h time trial performance. The mechanism responsible for the improvement in high-intensity exercise performance with exogenous carbohydrate appears to involve an increase in central drive or motivation rather than having any metabolic cause. The nature and role of putative CHO receptors in the mouth warrants further investigation.  相似文献   

8.
INTRODUCTION: The purpose of this study was to determine whether endurance cycling performance and postexercise muscle damage were altered when consuming a carbohydrate and protein beverage (CHO+P; 7.3% and 1.8% concentrations) versus a carbohydrate-only (CHO; 7.3%) beverage. METHODS: Fifteen male cyclists (mean (.-)VO(2peak) = 52.6 +/- 10.3 mL x kg x min) rode a cycle ergometer at 75% (.-)VO(2peak) to volitional exhaustion, followed 12 - 15 h later by a second ride to exhaustion at 85% (.-)VO(2peak). Subjects consumed 1.8 mL x kg BW of randomly assigned CHO or CHO+P beverage every 15 min of exercise, and 10 mL x kg BW immediately after exercise. Beverages were matched for carbohydrate content, resulting in 20% lower total caloric content per administration of CHO beverage. Subjects were blinded to treatment beverage and repeated the same protocol seven to 14 d later with the other beverage. RESULTS: In the first ride (75% (.-)VO(2peak)), subjects rode 29% longer (P < 0.05) when consuming the CHO+P beverage (106.3 +/- 45.2 min) than the CHO beverage (82.3 +/- 32.6 min). In the second ride (85% (.-)VO(2peak)), subjects performed 40% longer when consuming the CHO+P beverage (43.6 +/- 12.5 min) than when consuming the CHO beverage (31.2 +/- 8.7 min). Peak postexercise plasma CPK levels, indicative of muscle damage, were 83% lower after the CHO+P trial (216.3 +/- 122.0 U x L) than the CHO trial (1318.1 +/- 1935.6 U x L). There were no significant differences in exercising levels of (.-)VO(2), ventilation, heart rate, RPE, blood glucose, or blood lactate between treatments in either trial. CONCLUSION: A carbohydrate beverage with additional protein calories produced significant improvements in time to fatigue and reductions in muscle damage in endurance athletes. Further research is necessary to determine whether these effects were the result of higher total caloric content of the CHO+P beverage or due to specific protein-mediated mechanisms.  相似文献   

9.
Six male football players competed in a 90 min game (4-a-side) on two occasions following an exercise and diet (either high- approximately 65% or low- approximately 30% carbohydrate intake) regimen designed to manipulate muscle glycogen concentrations. Movement and technical parameters of performance and selected physiological responses were measured. Pre-game muscle glycogen concentrations following the high carbohydrate diet (mean +/- SD) (395.6 +/- 78.3 mmol x kg(-1) dw) were significantly higher than following the low carbohydrate diet (287.1 +/- 85.4 mmol x kg(-1) dw). The results of the movement analysis showed that the players performed significantly more (approximately 33%) high intensity exercise in the game played following the high carbohydrate diet. No significant differences were found, between the two dietary conditions, in any of the measured technical variables. Plasma FFA and glycerol concentrations in the game played following the low carbohydrate diet were significantly higher after 45 min (905 +/- 103 and 293 +/- 23 micromol x l(-1)) and post exercise (1388 +/- 122 and 366 +/- 36 micromol x l(-1)) compared to the game played following the high carbohydrate diet (532 +/- 137 and 202 +/- 55 micromol x l(-1) and 888 +/- 192 and 266 +/- 27 micromol x l(-1), respectively). Post-exercise blood glucose levels were significantly lower in the game played following the low carbohydrate diet (5.8 +/- 0.3 vs 7.2 +/- 0.3 mmol x l(-1)). No significant differences were found in the mean blood lactate values (3.5 +/- 0.6 and 3.9 +/- 0.5 mmol x l(-1)) or mean heart rates (162 vs. 163.5 beats x min(-1)) between the high and low carbohydrate conditions, respectively. The main finding from this study was that the carbohydrate content of the diet influenced the amount of high intensity exercise performed during a small-sided football game. This suggests that to optimise performances, in not only football but possibly also other multiple sprint sports of similar duration, a high carbohydrate diet should be administered in preparation for intense training and competition.  相似文献   

10.
PURPOSE: Five days of a high-fat diet produce metabolic adaptations that increase the rate of fat oxidation during prolonged exercise. We investigated whether enhanced rates of fat oxidation during submaximal exercise after 5 d of a high-fat diet would persist in the face of increased carbohydrate (CHO) availability before and during exercise. METHODS: Eight well-trained subjects consumed either a high-CHO (9.3 g x kg(-1) x d(-1) CHO, 1.1 g x kg(-1) x d(-1) fat; HCHO) or an isoenergetic high-fat diet (2.5 g x kg(-1) x d(-1) CHO, 4.3 g x kg(-1) x d(-1) fat; FAT-adapt) for 5 d followed by a high-CHO diet and rest on day 6. On day 7, performance testing (2 h steady-state (SS) cycling at 70% peak O(2) uptake [VO(2peak)] + time trial [TT]) of 7 kJ x kg(-1)) was undertaken after a CHO breakfast (CHO 2 g x kg(-1)) and intake of CHO during cycling (0.8 g x kg(-1) x h(-1)). RESULTS: FAT-adapt reduced respiratory exchange ratio (RER) values before and during cycling at 70% VO(2peak); RER was restored by 1 d CHO and CHO intake during cycling (0.90 +/- 0.01, 0.80 +/- 0.01, 0.91 +/- 0.01, for days 1, 6, and 7, respectively). RER values were higher with HCHO (0.90 +/- 0.01, 0.88 +/- 0.01 (HCHO > FAT-adapt, P < 0.05), 0.95 +/- 0.01 (HCHO > FAT-adapt, P < 0.05)). On day 7, fat oxidation remained elevated (73 +/- 4 g vs 45 +/- 3 g, P < 0.05), whereas CHO oxidation was reduced (354 +/- 11 g vs 419 +/- 13 g, P < 0.05) throughout SS in FAT-adapt versus HCHO. TT performance was similar for both trials (25.53 +/- 0.67 min vs 25.45 +/- 0.96 min, NS). CONCLUSION: Adaptations to a short-term high-fat diet persisted in the face of high CHO availability before and during exercise, but failed to confer a performance advantage during a TT lasting approximately 25 min undertaken after 2 h of submaximal cycling.  相似文献   

11.
The purpose of this study was to determine whether the ingestion of a sports bar (BAR) containing a mixture of fat (7 g), protein (14 ) and carbohydrate (CHO; 19 ) improved ulta-endurance cycling performance compared to when an equicaloric amount of CHO was consumed. On two occasions separated by a minimum of 7 days, six highly trained (peak power output [PPO] 414 +/- 8 W) endurance cyclists rode for 330 min at approximately 50% of PPO (203 +/- 8 W) while ingesting either the BAR or just CHO, before performing a 400 k] time trial as fast as possible. Rates of fat oxidation were significantly greater at the end of the submaximal ride when subjects ingested the BAR compared to CHO (1.09 +/- 0.08 vs 0.73 +/- 0.08g x min(-1); P<0.05), and accordingly total fat oxidation was significantly higher (280 +/- 24 vs 203 +/- 25 g, P < 0.05). However, two subjects failed to complete the time trial after they consumed the BAR during the prolonged, submaximal ride, whereas all subjects managed to finish the time trial when ingesting CHO. In conclusion, ingestion of the sports bar enhanced fat metabolism during prolonged, submaximal exercise, but impaired subsequent high-intensity time-trial performance.  相似文献   

12.
INTRODUCTION: The aim of the present study was to investigate the effect of ingesting a glucose plus fructose drink compared with a glucose-only drink (both delivering carbohydrate at a rate of 1.8 g.min(-1)) and a water placebo on endurance performance. METHODS: Eight male trained cyclists were recruited (age 32 +/- 7 yr, weight 84.4 +/- 6.9 kg, .VO(2max) 64.7 +/- 3.9 mL.kg(-1).min(-1), Wmax 364 +/- 31 W). Subjects ingested either a water placebo (P), a glucose (G)-only beverage (1.8 g.min(-1)), or a glucose and fructose (GF) beverage in a 2:1 ratio (1.8 g.min(-1)) during 120 min of cycling exercise at 55% Wmax followed by a time trial in which subjects had to complete a set amount of work as quickly as possible (approximately 1 h). Every 15 min, expired gases were analyzed and blood samples were collected. RESULTS: Ingestion of GF resulted in an 8% quicker time to completion during the time trial (4022 s) compared with G (3641 s) and a 19% improvement compared with W (3367 s). Total carbohydrate (CHO) oxidation was not different between GF (2.54 +/- 0.25 g.min(-1)) and G (2.50 g.min(-1)), suggesting that GF led to a sparing of endogenous CHO stores, because GF has been shown to have a greater exogenous CHO oxidation than G. CONCLUSION: Ingestion of GF led to an 8% improvement in cycling time-trial performance compared with ingestion of G.  相似文献   

13.
The provision of carbohydrate (CHO) supplements following resistance exercise attenuated muscle protein (PRO) degradation (Roy et al. J. Appl. Physiol. 82:1882-1888, 1997). The addition of PRO may have a synergistic effect upon whole body protein balance by increasing synthesis (Biolo et al. Am. J. Physiol. 273:E122-E129, 1997). PURPOSE: To determine if the macronutrient composition of a postexercise beverage would alter muscle anabolism and/or catabolism following resistance exercise. METHODS: We provided isoenergetic CHO (1 g x kg(-1)) and CHO/PRO/FAT supplements and placebo (PL) immediately (t = 0 h) and 1 h (t = + 1 h) following resistance exercise (9 exercises/3 sets/80% 1 RM) to 10 young, healthy, resistance-trained males. Whole body leucine turnover was determined from L-[1-13C]leucine kinetics at approximately 4 h postexercise. RESULTS: No differences were observed for urinary 3-methylhistidine or urea nitrogen excretion between the trials. Leucine flux was significantly elevated at approximately 4 h postexercise for both CHO/PRO/FAT (177.59+/-12.68 micromol x kg(-1) x h(-1)) and CHO (156.18+/-7.77 micromol x kg(-1) x h(-1)) versus PL (126.32+/-10.51 micromol x kg(-1) x h(-1)) (P < 0.01). Whole body leucine oxidation was elevated at approximately 4 h for CHO/PRO/FAT (29.50+/-3.34 micromol x kg(-1) h(-1)) versus CHO (16.32+/-2.33 micromol x kg(-1) x h(-1)) (P < 0.01) and PL (21.29+/-2.54 micromol x kg(-1) x h(-1)) (P < 0.05). Nonoxidative leucine disposal (NOLD) was significantly elevated at approximately 4 h for both CHO/PRO/FAT (148.09+/-10.37 micromol x kg(-1) x h(-1)) and CHO (139.86+/-7.02 micromol x kg(-1) x h(-1)) versus PL (105.03+/-8.97 micromol x kg(-1) x h(-1)) (P < 0.01). CONCLUSIONS: These results suggest that consumption of either CHO or CHO/PRO/FAT immediately and 1 h following a resistance training bout increased NOLD as compared with a placebo.  相似文献   

14.
PURPOSE: Beta-adrenergic blockade increases blood ammonia concentration during exercise. The purpose of this study was to assess the role of decreased carbohydrate availability in this process. METHODS: Wistar rats (N = 47) were injected intravenously with a selective beta 2-adrenoceptor blocker (ICI 118,551), placebo, or beta 2-blocker + glucose 1 h before a treadmill exercise test. Blood samples were taken to measure the concentration of ammonia, glucose, lactic acid, free fatty acids (FFA), glycerol, branched-chain amino acids (BCAA), and muscle samples for determination of glycogen content. RESULTS: Beta 2-adrenergic blockade shortened running time to exhaustion (23 +/- 4.3 min compared to 44 +/- 5.2 min with placebo), increased blood ammonia levels (146.7 +/- 16.21 micromol x L(-1) compared to 47.5 +/- 0.92 micromol x L(-1) with placebo) and prevented exercise-induced glycogen breakdown in soleus and gastrocnemius muscles. Pre-exercise supplementation of glucose during beta 2-blockade restored exercise-induced glycogen breakdown and reduced blood ammonia concentration during exercise (66.5 +/- 5.65 mmol x L(-1)) but did not improve exercise capacity (26 +/- 3.2 min) when compared with beta2-blockade alone. CONCLUSION: The results suggest that the enhanced rise in blood ammonia concentration during exercise after beta-blockade is caused by impaired carbohydrate availability.  相似文献   

15.
PURPOSE: We investigated the effects of acute plasma volume expansion on exercise performance in the heat. METHODS: Six moderately trained men cycled for 40 min at 64 +/- 2% peak pulmonary oxygen uptake (VO2peak) followed by an individual performance time trial, where subjects completed a set amount of work (267 +/- 15 kJ) in as little time as possible. Exercise trials were performed at 35 degrees C with a relative humidity of 40%. Subjects performed two exercise trials: one after 13.1 +/- 1% acute plasma volume expansion (PVE), which was achieved by the intravenous infusion of 8 mL x kg(-1) body weight of Hemaccel (35 g x L(-1) polygeline, 145 mmol x L(-1) Na+, and 145 mmol x L(-1) Cl-) and the other without prior treatment (CON). RESULTS: Core temperature, skin blood flow, and heart rate progressively increased (P < 0.05) during exercise, but no differences were observed between trials. Plasma glucose and lactate were similar at rest and during exercise, as was VO2 during exercise. Exercise performance was not influenced by plasma volume expansion (CON 17.5 +/- 0.4 min and PVE 17.1 +/- 0.2 min). CONCLUSION: These data suggest that, in moderately trained men, plasma volume expansion alone does not enhance thermoregulatory function and exercise performance during moderate intensity exercise in the heat.  相似文献   

16.
The positive effects of carbohydrate (CHO) supplementation on endurance exercise are well documented but the placebo (PLA(c)) effect can make the ergogenic qualities of substances more difficult to determine. Therefore, this study tested the effect of double blind ingestion of PLA(c) and CHO(c) in capsules versus known capsule (CHO(k)) ingestion on prolonged exercise heat stress. Nine well trained male volunteers (mean+/-S.D.: 23+/-3 years; 62.4+/-6.5 kg and 65.8+/-5.2 mL kg(-1) min(-1) peak oxygen consumption) exercised at 60% of maximum power output until volitional exhaustion (TTE) in the three different conditions. Capsules were ingested with 252+/-39 mL of water. Blood glucose in CHO(c) and CHO(k) was similar but higher (p<0.05) than PLA(c) from 45 min to end of exercise. There were no differences in TTE between PLA(c) (125.2+/-37.1 min) or CHO(c) (138.8+/-47.0 min) or between CHO(c) and CHO(k) (155.8+/-54.2 min). Time to volitional exhaustion was different between PLA(c) and CHO(k) (p<0.05). Increased TTE resulted when participants and researchers knew the capsule content, but not in the double blind condition. The difference could be related to a combined effect of CHO ingestion and knowledge of what was ingested possibly acting as a potent psychological motivator.  相似文献   

17.
PURPOSE: This study assessed whether liquid carbohydrate-protein (C+P) supplements, ingested early during recovery, enhance muscle glycogen resynthesis versus isoenergetic liquid carbohydrate (CHO) supplements, given early or an isoenergetic solid meal given later during recovery (PLB). METHODS: Two hours after breakfast (7.0 kcal.kg; 0.3 g.kg P, 1.2 g.kg C, 0.1 g.kg F), six male cyclists performed a 60-min time trial (AMex). Pre- and postexercise, vastus lateralis glycogen concentrations were determined using nMRS. Immediately, 1 h, and 2 h postexercise, participants ingested C+P (4.8 kcal.kg; 0.8 g.kg C, 0.4 g.kg P), CHO (4.8 kcal.kg; 1.2 g.kg C), or PLB (no energy). Four hours postexercise, a solid meal was ingested. At that time, C+P and CHO received a meal identical to breakfast, whereas PLB received 21 kcal.kg (1 g.kg P, 3.6 g.kg C, 0.3 g.kg F); energy intake during 6 h of recovery was identical among treatments. After 6 h of recovery, measurement and cycling protocols (PMex) were repeated. RESULTS: Absolute muscle glycogen utilization was 18% greater (P 相似文献   

18.
Nine men were studied during three 4-h cycling bouts to determine the effect of frequency and dosage of solid carbohydrate (CHO) feedings (86 g) on muscle glycogen utilization and exercise performance. In the frequency trial (F), the subjects ingested 10.75 g of CHO along with 200 ml of water at 30-min intervals; in the dosage trial (D), the subjects ingested 21.5 g of CHO with 400 ml of water at 60-min intervals. During the control trial (C), the subjects ingested 400 ml of an artificially sweetened placebo at 60-min intervals. Respiratory exchange ratios were significantly elevated in both trials D and F (P less than 0.05). Blood glucose was significantly elevated in trial D 20 min post-feeding but had returned to control levels by 50 min. In trial F, blood glucose was maintained at a constant level throughout the entire 4 h. In trial C, blood glucose declined steadily during the entire 4 h. Despite the differences in blood glucose levels between the three trials, there were no significant differences in the rate of muscle glycogen utilization in any of the trials (D = 82.9 +/- 6.6 [SE] mmol X kg-1 vs C = 80.9 +/- 6.9 mmol X kg-1 vs F = 74.4 +/- 12.2 mmol X kg-1). In a sprint ride (100% VO2max) to exhaustion at the end of each trial, the subjects performed significantly longer in trial F compared to C (120.97 +/- 9.6 vs 81.0 +/- 7.1 s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This study was undertaken to determine the effects of ingesting 5.0 (CHO-5), 6.0 (CHO-6), and 7.5 g/100 ml (CHO-7.5) carbohydrate (CHO) solutions on blood glucose and counterregulatory hormonal responses during prolonged intermittent exercise. Eight well-trained cyclists performed four trials consisting of seven 12-min cycling bouts at 70% of VO2max with 3 min rest between each ride. A final 12 min ride was an all-out self-paced performance ride. During the rest interval the subjects ingested either a water placebo (WP) or one of the CHO solutions at a rate of 8.5 mg/kg/h (approx. 150 ml). Blood samples were taken at 0, 25, 55, 85, and 115 min of exercise and were assayed for glucose, glucagon (GG), cortisol (CT), insulin (IN), epinephrine (EP), and norepinephrine (NE). Blood glucose levels were significantly lower in the WP trial compared to the CHO trials at 25 (4.6 +/- 0.2 vs 5.7 +/- 0.5 mmol/l) and 55 min (4.4 +/- 0.3 vs 5.0 +/- 0.8 mmol/l). At 85 min blood glucose was significantly lower in the WP compared to the CHO-6 and CHO-7.5 trials. GG and IN levels were not significantly different between trials; however, the GG:IN molar ratio was significantly higher in the WP than in the CHO-7.5 trial. CT was significantly elevated in the WP trial compared to the CHO-7.5 trial. EP and NE levels were not affected by CHO ingestion. These data suggest that CHO feedings prevent the typical hormonal responses which are responsible for hepatic glucose release, thus eliciting a possible hepatic glycogen sparing.  相似文献   

20.
Recent work from our laboratory demonstrated that carbohydrate supplementation (CHOS) during exercise improved prolonged time-trial (TT) performance of sea-level residents (SLR) living at 4300 m while they were in daily negative energy balance (- 1250 kcal x day (-1); [ ]). The purposes of the current study were to determine during initial exposure to 4300 m:1) whether CHOS also improves TT performance of moderate altitude residents (MAR) who are in energy balance and 2) if acclimatization to moderate elevations benefits TT performance. Fifteen Air Force Academy (AFA) active duty members (age: 30 +/- 1 yrs; mean +/- SE), who had been living at approximately 2000 m for 21 +/- 3 months performed a maximal-effort 720-kJ cycle TT at the AFA and at Pikes Peak (PP), CO, (4300 m) on days 1 (PP1) and 3 (PP3). Daily energy intake and expenditure were maintained similarly at the AFA and PP. At the start of the TTs at PP, and then every 15 min thereafter, 9 subjects drank a 10 % CHO solution (0.175 g x kg (-1) body weight) and 6 subjects drank a placebo (PLA) solution. All subjects were allowed to freely adjust the power output of the cycle ergometer and drank water AD LIBITUM. Performance time did not differ between groups on PP1 (CHOS vs. PLA; 101 +/- 8 vs. 116 +/- 10 min) or PP3 (95 +/- 8 vs. 107 +/- 12 min). For both groups, cycle times on PP1 and PP3 were longer compared to the AFA (p<0.01) and were improved from PP1 to PP3 (p<0.05). Exercise intensity (i.e., % peak oxygen uptake) was maintained similarly at approximately 62 % during the TTs at the AFA and PP. Blood glucose was 1.5 to 2.0 mmol x L (-1) higher for CHOS vs. PLA (p<0.01). It was concluded that CHOS provided no TT performance benefit for MAR at 4300 m when energy balance was maintained. However, the decrements in TT performance and exercise intensity were attenuated at 4300 m in MAR compared to those of SLR as a result of acclimatization attained while living for nearly 2 years at approximately 2000 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号