首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marfan syndrome (MFS) is an autosomal dominant disorder of the extracellular matrix. Allelic variations in the gene for fibrillin-1 (FBN1) have been shown to cause MFS. To date, over 550 mutations have been identified in patients with MFS and related connective tissue diseases. However, about a half of MFS cases do not possess mutations in the FBN1 gene. These findings raise the possibility that variants located in other genes cause or modify MFS. To explore this possibility, firstly we analyzed FBN1 allelic variants in 12 Japanese patients with MFS, and secondly we analyzed fibrillin-3 gene (FBN3) in patients without FBN1 mutations using conformation sensitive gel electrophoresis (CSGE) and direct sequencing analysis. We identified three novel FBN1 mutations and ten FBN3 single nucleotide polymorphisms (SNPs). In this report, we could not detect a responsible mutation of the FBN3 gene for MFS. Although the number of the cases in this report is small, at least these results suggest that disease-causing mutations in exon regions of the FBN3 gene are very rare in MFS.Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers: AB177797, AB177798, AB177799, AB177800, AB177801, AB177802, AB177803  相似文献   

2.
Marfan syndrome (MFS) is caused by mutations in the fibrillin-1 (FBN1) gene, and mutations in FBN1 are known to be responsible for over 90% of all MFS cases. Locus heterogeneity has also been reported and confirmed, with mutations in the receptor genes TGFBR1 and TGFBR2 identified in association with MFS-related phenotypes. It is now known that dysregulation of TGF-? signaling is involved in MFS pathogenesis. To test the hypothesis that dysregulation of TGFBR3-associated TGF-? signaling is implicated in MFS or related phenotype pathogenesis, we selected a cohort of 49 patients, fulfilling or nearly fulfilling the diagnostic criteria for MFS. The patients were known not to carry a mutation in the FBN1 gene (including three 5' upstream alternatively spliced exons), the TGFBR1 and TGFBR2 genes. Mutation screening for the TGFBR3 gene in these patients and in controls led to the identification of a total of ten exonic (one novel), four intronic (one novel) and one 3'UTR variant in the TGFBR3 gene. Our data suggest that variations in TGFBR3 gene appear not to be associated with MFS or related phenotype.  相似文献   

3.
Congenital contractural arachnodactyly (CCA) is an autosomal dominant condition phenotypically related to Marfan syndrome (MFS). CCA is caused by mutations in FBN2, whereas MFS results from mutations in FBN1. FBN2 mRNA extracted from 12 unrelated CCA patient cell strains was screened for mutations, and FBN2 mutations were identified in six of these samples. All of the identified FBN2 mutations cluster in a limited region of the gene, a region where mutations in FBN1 produce the severe, congenital form of MFS (so-called neonatal MFS). Furthermore, three of the identified mutations occur in the FBN2 locations exactly corresponding to FBN1 mutations that have been reported in cases of neonatal MFS. These mutations indicate that this central region of both of the fibrillins plays a critical role in human embryogenesis. The limited region of FBN2 that can be mutated to cause CCA may also help to explain the rarity of CCA compared to MFS. Am. J. Med. Genet. 78:350–355, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, is caused by mutations in the gene encoding fibrillin 1 (FBN1). The clinical spectrum and severity of MFS disorder varies greatly both between and within families. Since there have been only a few reports on the relationship between FBN1 genotypes and clinical phenotypes in Japanese patients, the FBN1 gene was analyzed in 27 Japanese patients diagnosed with MFS. The nucleotide sequence of the 65 exons of the FBN1 gene was analyzed by PCR and direct sequencing. We have identified six polymorphisms and nine mutations including: four missense mutations (C1652Y, Q2054P, D2127Y, C2221R) in six patients, three nonsense mutations (R215X, S813X, R2220X) in three patients, and two frameshift mutations (2567insT, 7790insT) in three patients. Six of these nine mutations were in the calcium-binding epidermal growth factor-like domains all causative mutations detected except for C2221R were novel. It has been reported that the severe phenotypes of infantile MFS correlate with mutations in the mid region of FBN1, however, mutations were not detected in this region in the population analyzed in this study. Our results suggest that the location of the mutation is not the sole determinant of phenotypic severity; rather there is some difference in the genetic basis of MFS between Japanese and Caucasian populations.  相似文献   

5.
In order to estimate the contribution of mutations at the fibrillin-1 locus (FBN1) to classical Marfan syndrome (MFS) and to study possible phenotypic differences between patients with an FBN1 mutation vs. without, a comprehensive molecular study of the FBN1 gene in a cohort of 93 MFS patients fulfilling the clinical diagnosis of MFS according to the Ghent nosology was performed. The initial mutation screening by CSGE/SSCP allowed identification of an FBN1-mutation in 73 patients. Next, sequencing of all FBN1-exons was performed in 11 mutation-negative patients, while in nine others, DHPLC was used. This allowed identification of seven and five additional mutations, respectively. Southern blot analysis revealed an abnormal hybridization pattern in one more patient. A total of 23 out of the 85 mutations identified here are reported for the first time. Phenotypic comparison of MFS patients with cysteine-involving mutations vs. premature termination mutations revealed significant differences in ocular and skeletal involvement. The phenotype of the eight patients without proven FBN1 mutation did not differ from the others with respect to the presence of major cardiac, ocular, and skeletal manifestations or positive familial history. Most likely, a portion of FBN1-mutations remains undetected because of technical limitations. In conclusion, the involvement of the FBN1-gene could be demonstrated in at least 91% of all MFS patients (85/93), which strongly suggests that this gene is the predominant, if not the sole, locus for MFS.  相似文献   

6.
The Marfan syndrome (MFS) is a pleiotropic, autosomal dominant disorder of connective tissue with highly variable clinical manifestations including aortic dilatation and dissection, ectopia lentis, and a series of skeletal anomalies. Mutations in the gene for fibrillin-1 (FBN1) cause MFS, and at least 337 mainly unique mutations have been published to date. FBN1 mutations have been found not only in MFS but also in a range of connective tissue disorders collectively termed fibrillinopathies ranging from mild phenotypes, such as isolated ectopia lentis, to severe disorders including neonatal MFS, which generally leads to death within the first two years of life. The present article intends to provide an overview of mutations found in MFS and related disorders and to discuss potential genotype-phenotype correlations in MFS.  相似文献   

7.
Marfan syndrome (MFS) is an autosomal dominant condition with pleiotropic manifestations involving the skeletal, ocular, and cardiovascular systems. The diagnosis is based primarily on clinical involvement of these and other systems, referred to as the Ghent criteria. We have identified three Hispanic families from Mexico with cardiovascular and ocular manifestations due to novel FBN1 mutations but with paucity of skeletal features. The largest family, hMFS001, had a frameshift mutation in exon 24 (3075delC) identified as the cause of aortic disease in the family. Assessment of eight affected adults revealed no major skeletal manifestation of MFS. Family hMFS002 had a missense mutation (R1530C) in exon 37. Four members fulfilled the criteria for ocular and cardiovascular phenotype but lacked skeletal manifestations. Family hMFS003 had two consecutive missense FBN1 mutations (C515W and R516G) in exon 12. Eight members fulfilled the ocular criteria for MFS and two members had major cardiovascular manifestations, however none of them met criteria for skeletal system. These data suggest that individuals of Hispanic descent with FBN1 mutations may not manifest skeletal features of the MFS to the same extent as Caucasians. We recommend that echocardiogram, ocular examination and FBN1 molecular testing be considered for any patients with possible MFS even in the absence of skeletal features, including Hispanic patients.  相似文献   

8.
Marfan Syndrome (MFS) is an autosomal dominant disorder of the connective tissue due to mutations of Fibrillin-1 gene (FBN1) in more than 90% of cases and Transforming Growth Factor-Beta-Receptor2 gene (TGFB2R) in a minority of cases. Genotyping is relevant for diagnosis and genotype-phenotype correlations. We describe the FBN1 genotypes and related phenotypes of 81 patients who were referred to our attention for MFS or Marfan-like phenotypes. Patients underwent multidisciplinary pertinent evaluation in the adult or paediatric setting, according to their age. The diagnosis relied on Ghent criteria. To optimise DHPLC analysis of the FBN1 gene, all coding regions of the gene were directly sequenced in 19 cases and 10 controls: heterozygous amplicons were used as true positives. DHPLC sensitivity was 100%. Then, DHPLC was used to screen 62 other cases. We identified 74 FBN1 mutations in 81 patients: 64 were novel and 17 known. Of the 81 mutations, 41 were missense (50.6%), 27, either nonsense or frameshift mutations and predicted a premature termination codon (PTC) (33%), 11 affected splice sites (13.6%), and two predicted in-frame deletions (2.5%). Most mutations (67.9%) occurred in cbEGF-like modules. Genotype was clinically relevant for early diagnosis and conclusion of the diagnostic work-up in patients with incomplete or atypical phenotypes.  相似文献   

9.
Mutations identified in the fibrillin-1 (FBN1) gene have been associated with Marfan syndrome (MFS). Molecular analysis of the gene is classically performed in probands with MFS to offer diagnosis for at-risk relatives and in children highly suspected of MFS. However, FBN1 gene mutations are found in an ill-defined group of diseases termed ‘type I fibrillinopathies'', which are associated with an increased risk of aortic dilatation and dissection. Thus, there is growing awareness of the need to identify these non-MFS probands, for which FBN1 gene screening should be performed. To answer this need we compiled the molecular data obtained from the screening of the FBN1 gene in 586 probands, which had been addressed to our laboratory for molecular diagnosis. In this group, the efficacy of FBN1 gene screening was high in classical MFS probands (72.5%,), low (58%) in those referred for incomplete MFS and only slight (14.3%) for patients referred as possible MFS. Using recursive partitioning, we found that the best predictor of the identification of a mutation in the FBN1 gene was the presence of features in at least three organ systems, combining one major, and various minor criteria. We also show that our original recommendation of two systems involved with at least one with major criterion represents the minimal criteria because in probands not meeting these criteria, the yield of mutation identification drastically falls. This recommendation should help clinicians and biologists in identifying probands with a high probability of carrying a FBN1 gene mutation, and thus optimize biological resources.  相似文献   

10.
Marfan syndrome (MFS; MIM #154700) is a connective tissue disorder characterized by cardiovascular, skeletal, and ocular abnormalities. The fibrillin-1 gene (FBN1; MIM no. 134797) on chromosome 15 was revealed to be the cause of Marfan syndrome. To date over 137 types of FBN1 mutations have been reported. In this study, two novel mutations and a recurrent de-novo mutation were identified in patients with MFS by means of single-strand conformational polymorphism (SSCP) analysis. The two novel mutations are a 4-bp deletion at nucleotide 2820-2823 and a G-to-T transversion at nucleotide 1421 (C474F), located on exon 23 and exon 11, respectively. A previously reported mutation at the splicing donor site of intron 2 (IVS2 G + 1A), which is predicted to cause exon skipping, was identified in a sporadic patient with classical MFS. Received: November 1, 1999 / Accepted: November 9, 1999  相似文献   

11.
Excessive activation of the transforming growth factor beta signaling pathway and disorganized cellular skeleton caused by genetic mutations are known to be responsible for the inherited thoracic aortic aneurysms and dissections (TAAD), a life-threatening vascular disease. To investigate the genotype–phenotype correlation, we screened genetic mutations of fibrillin-1 (FBN1), transforming growth factor-β receptor-1 (TGFBR1) and transforming growth factor-β receptor-2 (TGFBR2) for TAAD in 7 affected families and 22 sporadic patients. Of 19 potential mutations identified in FBN1, 11 appeared novel while the others were recurrent. Two mutations were detected in TGFBR2. Eight patients carried no mutation in either of these genes. Characterization of FBN1 c.5917+6T>C in transfected HEK293 cells demonstrated that it caused skipping of exon 47, leading to the loss of the 33th calcium binding epidermal growth factor-like domain associated with Marfan syndrome. Compared with exon 46, skipping of 47 did not cause patients ectopia lentis in all carriers. To correlate genotypes with phenotypes in different human ancestries, we reviewed the published mutational studies on FBN1 and found that the probability of cardiovascular defects were significantly increased in Chinese patients with premature termination codon or splicing mutations than those with missense mutations (91.7 % vs 54.2 %, P?=?0.0307) or with noncysteine-involved point mutations than those with cysteine-involved mutations (88.9 % vs 33.3 %, P?=?0.0131). Thus, we conclude that exon 47 skipping of FBN1 leads preferentially to cardiovascular defects and human ancestries influence genotype–phenotype correlation in TAAD.  相似文献   

12.
Marfan syndrome (MFS) is an autosomal dominantly inherited connectivetissue disorder characterized by cardiovascular, ocular andskeletal manifestations. Previously, mutations in the fibrillin-1gene on chromosome 15 (FBN1) have been reported to cause MFS.We have now screened 44 probands with MFS or related phenotypesfor alterations in the entire fibrillin coding sequence (9.3kb) by single strand conformation analysis. We report four uniquemutations in the fibrillin gene of unrelated MFS patients. Oneis a 17 bp deletion and three are missense mutations, two ofwhich involve 8-cysteine motifs. Another missense mutation wasfound in two unrelated individuals with annuloaortic ectasiabut was also present in unaffected relatives and controls fromvarious ethnic backgrounds. By using allele-specific ollgonucleotidehybridization, we screened 65 unrelated MFS patients, 29 patientswith related phenotypes and 84 control individuals for thesemutations as well as for a previously reported mutation andtwo polymorphisms. Our results suggest that most MFS familiescarry unique mutations and that the fibrillin genotype is notthe sole determinant of the connective tissue phenotype.  相似文献   

13.
14.
Congenital contractural arachnodactyly (CCA) is an autosomal dominant condition that shares skeletal features with Marfan syndrome (MFS), but does not have the ocular and cardiovascular complications that characterize MFS. CCA and MFS result from mutations in highly similar genes, FBN2 and FBN1, respectively. All the identified CCA mutations in FBN2 cluster in a limited region similar to where severe MFS mutations cluster in FBN1, specifically between exons 23 and 34. We screened exons 22 through 36 of FBN2 for mutations in 13 patients with classic CCA by single stranded conformational polymorphism analysis (SSCP) and then by direct sequencing. We successfully identified 10 novel mutations in this critical region of FBN2 in these patients, indicating a mutation detection rate of 75% in this limited region. Interestingly, none of these identified FBN2 mutations alter amino acids in the calcium binding consensus sequence in the EGF‐like domains, whereas many of the FBN1 mutations alter the consensus sequence. Furthermore, analysis of the clinical data of the CCA patients with characterized FBN2 mutation indicate that CCA patients have aortic root dilatation and the vast majority lack evidence of congenital heart disease. These studies have implications for our understanding of the molecular basis of CCA, along with the diagnosis and genetic counseling of CCA patients. Hum Mutat 19:39–48, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in the gene encoding fibrillin-1 (FBN1), a matrix component of microfibrils.Dural ectasia, i.e. enlargement of the neural canal mainly located in the lower lumbar and sacral region, frequently occurs in Marfan patients.The aim of our study was to investigate the role of dural ectasia in raising the diagnosis of Marfan syndrome and its association with FBN1 mutations.We studied 40 unrelated patients suspected for MFS, who underwent magnetic resonance imaging searching for dural ectasia. In all of them FBN1 gene analysis was also performed.Thirty-seven patients resulted affected by Marfan syndrome according to the '96 Ghent criteria; in 30 of them the diagnosis was confirmed when revaluated by the recently revised criteria (2010).Thirty-six patients resulted positive for dural ectasia. The degree of dural ectasia was grade 1 in 19 patients, grade 2 in 11 patients, and grade 3 in 6 patients. In 7 (24%) patients, the presence of dural ectasia allowed to reach a positive score for systemic feature criterion.Twenty-four patients carried an FBN1 mutation, that were represented by 13 missense (54%), and 11 (46%) mutations generating a premature termination codon (PTC, frameshifts and stop codons). No mutation was detected in the remaining 16 (6 patients with MFS and 10 with related disorders according to revised Ghent criteria). The prevalence of severe (grade 2 and grade 3) involvement of dura mater was higher in patients harbouring premature termination codon (PTC) mutations than those carrying missense-mutations (8/11 vs 2/13, P = 0.0111).Our data emphasizes the importance of dural ectasia screening to reach the diagnosis of Marfan syndrome especially when it is uncertain and indicates an association between PTC mutations and severe dural ectasia in Marfan patients.  相似文献   

16.
Marfan syndrome (MFS) is an autosomal-dominant disorder of the fibrous connective tissue that is typically caused by mutations in the gene coding for fibrillin-1 (FBN1), a major component of extracellular microfibrils. The clinical spectrum of MFS is highly variable and includes involvement of the cardiovascular, skeletal, ocular, and other organ systems; however, the genotype-phenotype correlations have not been well developed. Various screening methods have led to the identification of about 600 different mutations (FBN1-UMD database; www.umd.be). In this study we performed SSCP and/or direct sequencing to analyze all 65 exons of the FBN1 gene in 116 patients presenting with classic MFS or related phenotypes. Twenty-nine novel and nine recurrent mutations were identified in 38 of the analyzed patients. The mutations comprised 18 missense (47%), eight nonsense (21%), and five splice site (13%) mutations. Seven further mutations (18%) resulted from deletion, insertion, or duplication events, six of which led to a frameshift and subsequent premature termination. Additionally, we describe new polymorphisms and sequence variants. On the basis of the data presented here and in a previous study, we were able to establish highly significant correlations between the FBN1 mutation type and the MFS phenotype in a group of 76 mutation-positive patients for whom comprehensive clinical data were available. Most strikingly, there was a significantly lower incidence of ectopia lentis in patients who carried a mutation that led to a premature termination codon (PTC) or a missense mutation without cysteine involvement in FBN1, as compared to patients whose mutations involved a cysteine substitution or splice site alteration.  相似文献   

17.
《Genetics in medicine》2021,23(5):865-871
PurposeIndividuals with mosaic pathogenic variants in the FBN1 gene are mainly described in the course of familial screening. In the literature, almost all these mosaic individuals are asymptomatic. In this study, we report the experience of our team on more than 5,000 Marfan syndrome (MFS) probands.MethodsNext-generation sequencing (NGS) capture technology allowed us to identify five cases of MFS probands who harbored a mosaic pathogenic variant in the FBN1 gene.ResultsThese five sporadic mosaic probands displayed classical features usually seen in Marfan syndrome. Combined with the results of the literature, these rare findings concerned both single-nucleotide variants and copy-number variations.ConclusionThis underestimated finding should not be overlooked in the molecular diagnosis of MFS patients and warrants an adaptation of the parameters used in bioinformatics analyses. The five present cases of symptomatic MFS probands harboring a mosaic FBN1 pathogenic variant reinforce the fact that apparently asymptomatic mosaic parents should have a complete clinical examination and a regular cardiovascular follow-up. We advise that individuals with a typical MFS for whom no single-nucleotide pathogenic variant or exon deletion/duplication was identified should be tested by NGS capture panel with an adapted variant calling analysis.  相似文献   

18.
Fibrillins are large, cysteine-rich glycoproteins that form microfibrils and play a central role in elastic fibrillogenesis. Fibrillin-1 and fibrillin-2, encoded by FBN1 on chromosome 15q21.1 and FBN2 on chromosome 5q23-q31, are highly similar proteins. The finding of mutations in FBN1 and FBN2 in the autosomal dominant microfibrillopathies Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA), respectively, has highlighted their essential role in the development and homeostasis of elastic fibres. MFS is characterized by cardiovascular, skeletal and ocular abnormalities, and CCA by long, thin, flexed digits, crumpled ears and mild joint contractures. Although mutations arise throughout FBN1, those clustering within exons 24-32 are associated with the most severe form of MFS, so-called neonatal MFS. All the mutations described in CCA occur in the "neonatal region" of FBN2. Both MFS and CCA are thought to arise via a dominant negative mechanism. The analysis of mouse mutations has demonstrated that fibrillin-1 microfibrils are mainly engaged in tissue homeostasis rather than elastic matrix assembly. In the current investigation, we have analysed the classical mouse mutant shaker-with-syndactylism using a positional candidate approach and demonstrated that loss-of-function mutations outside the "neonatal region" of Fbn2 cause syndactyly in mice. These results suggest that phenotypes distinct from CCA may result in man as a consequence of mutations outside the "neonatal region" of FBN2.  相似文献   

19.
PurposeIn a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm.MethodsTargeted resequencing and deletion/duplication testing of FBN1 and related genes were performed.ResultsWe identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes.ConclusionImportant novel genotype–phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.  相似文献   

20.

Background  

Thoracic aortic aneurysms and dissections (TAAD) is a critical condition that often goes undiagnosed with fatal consequences. While majority of the cases are sporadic, more than 20% are inherited as a single gene disorder. The most common familial TAA is Marfan syndrome (MFS), which is primarily caused by mutations in fibrillin-1 (FBN1) gene. Patients with FBN1 mutations are at higher risk for dissection compared to other patients with similar size aneurysms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号