首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two previous studies have shown that frontal-temporal disconnection in monkeys, produced by unilateral ablation of frontal cortex in one hemisphere and of visual inferior temporal cortex in the opposite hemisphere is entirely without effect on visual object-reward association learning in concurrent discrimination tasks. This is a surprising finding in light of the severe impairments that follow frontal-temporal disconnection in many other tests of visual learning and memory, including delayed matching-to-sample and several conditional learning tasks. To explore the limits of this preserved object-reward association learning, we trained monkeys on visual object discrimination learning set (DLS) prior to frontal-temporal disconnection. As a result of training with single object-reward associations, the monkeys acquired a proficient learning set, evidenced by the rapid learning of new single object-reward association problems. This rapid learning was not affected by unilateral ablations of either inferior temporal cortex alone or frontal cortex alone but was severely impaired after final surgery to complete the disconnection. Moreover, each individual monkey now learned single object-reward association problems at the slow rate at which that individual had learned such problems before the formation of learning set. This result shows that frontal-temporal disconnection abolishes visual learning set.  相似文献   

2.
We employed functional magnetic resonance imaging (fMRI) in 12 healthy subjects to measure cerebral activation related to a set of higher order manual sensorimotor tasks performed in the absence of visual guidance. Purposeless manipulation of meaningless plasticine lumps served as a reference against which we contrasted two tasks where manual manipulation served a meaningful purpose, either the perception and recognition of three-dimensional shapes or the construction of such shapes out of an amorphous plasticine lump. These tasks were compared with the corresponding mental imagery of the modelling process which evokes the constructive concept but lacks concomitant sensorimotor input and output. Neural overlap was found in a bilateral activity increase in the posterior and anterior intraparietal sulcus area (IPS and AIP). Differential activation was seen in the supplementary and cingulate motor areas, the left M1 and the superior parietal lobe for modelling and in the left angular and ventral premotor cortex for imagery. Our data thus point to a congruent neural substrate for both perceptive and constructive object-oriented sensorimotor cognition in the AIP and posterior IPS. The leftward asymmetry of the inferior parietal activations, including the angular gyrus, during imagery of modelling along with the ventral premotor activations emphasize the close vicinity of the circuitry for cognitive manipulative motor behaviour and language.  相似文献   

3.
Activation of motor-related areas has consistently been found during various motor imagery tasks and is regarded as the central mechanism generating motor imagery. However, the extent to which motor execution and imagery share neural substrates remains controversial. We examined brain activity during preparation for and execution of physical or mental finger tapping. During a functional magnetic resonance imaging at 3 T, 13 healthy volunteers performed an instructed delay finger-tapping task either in a physical mode or mental mode. Number stimuli instructed subjects about a finger-tapping sequence. After an instructed delay period, cue stimuli prompted them either to execute the tapping movement or to imagine it. Two types of planning/preparatory activity common for movement and imagery were found: instruction stimulus-related activity represented widely in multiple motor-related areas and delay period activity in the medial frontal areas. Although brain activity during movement execution and imagery was largely shared in the distributed motor network, imagery-related activity was in general more closely related to instruction-related activity than to the motor execution-related activity. Specifically, activity in the medial superior frontal gyrus, anterior cingulate cortex, precentral sulcus, supramarginal gyrus, fusiform gyrus, and posterolateral cerebellum likely reflects willed generation of virtual motor commands and analysis of virtual sensory signals.  相似文献   

4.
Cortical connections of area V4 in the macaque   总被引:1,自引:0,他引:1  
To determine the locus, full extent, and topographic organization of cortical connections of area V4 (visual area 4), we injected anterograde and retrograde tracers under electrophysiological guidance into 21 sites in 9 macaques. Injection sites included representations ranging from central to far peripheral eccentricities in the upper and lower fields. Our results indicated that all parts of V4 are connected with occipital areas V2 (visual area 2), V3 (visual area 3), and V3A (visual complex V3, part A), superior temporal areas V4t (V4 transition zone), MT (medial temporal area), and FST (fundus of the superior temporal sulcus [STS] area), inferior temporal areas TEO (cytoarchitectonic area TEO in posterior inferior temporal cortex) and TE (cytoarchitectonic area TE in anterior temporal cortex), and the frontal eye field (FEF). By contrast, mainly peripheral field representations of V4 are connected with occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP (lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and MST (medial STS area), and parahippocampal area TF (cytoarchitectonic area TF on the parahippocampal gyrus). Based on the distribution of labeled cells and terminals, projections from V4 to V2 and V3 are feedback, those to V3A, V4t, MT, DP, VIP, PIP, and FEF are the intermediate type, and those to FST, MST, LIP, TEO, TE, and TF are feedforward. Peripheral field projections from V4 to parietal areas could provide a direct route for rapid activation of circuits serving spatial vision and spatial attention. By contrast, the predominance of central field projections from V4 to inferior temporal areas is consistent with the need for detailed form analysis for object vision.  相似文献   

5.
Brain functions during the resting state have attracted considerable attention in the past several years. However, little has been known about spontaneous activity in the sensory cortices in the task-free state. This study used functional magnetic resonance imaging (fMRI) to investigate the existence of spontaneous activity in the primary visual areas (PVA) of normal-sighted subjects and to explore the physiological implications of such activity. Our results revealed that we were able to detect spontaneous activity, which was nonrandom in that it was distinctly clustered both temporally and spatially in the PVA of each subject. In addition, the neural network associated with the PVA-related spontaneous activity included the visual association areas, the precuneus, the precentral/postcentral gyrus, the middle frontal gyrus, the fusiform gyrus, the inferior/middle temporal gyrus, and the parahippocampal gyrus. After considering the functions of these regions, we speculated that the PVA-related spontaneous activity may be associated with memory-related mental imagery and/or visual memory consolidation processes. These findings confirm the presence of spontaneous activity in the PVA and related brain areas. This confirmation supports the perspective that brain is a system intrinsically operating on its own, and sensory information interacts with rather than determines the operation of the system.  相似文献   

6.
Skillful object manipulation requires that haptically explored spatial object characteristics like orientation be adequately represented in working memory. In the current functional magnetic resonance imaging study, healthy right-handed participants explored a bar-shaped reference object with the left hand, memorizing its orientation. After a variable delay (0.5, 5, or 10 s), participants used their right hand to match the orientation by rotating a second, identical object. In the first seconds of the delay, right sensorimotor cortex was active, whereas clusters in left anterior prefrontal cortex (aPFC) (Brodmann area 10) became dominant 2 s after the end of exploration, showing sustained activity for several seconds. In contrast, left parieto-occipital cortex was involved toward the end of the delay interval. Our results indicate that a dynamic network of brain areas subserves hapticospatial information processing in the delay between haptic stimulus exploration and orientation matching. We propose that haptic sensory traces, maintained in contralateral sensorimotor cortex, are transformed into more abstract hapticospatial representations in the early delay stages. Maintenance of these representations engages aPFC and parieto-occipital cortex. Whereas aPFC possibly integrates spatial and motor components of hapticospatial working memory, parieto-occipital cortex might be involved in orientation imagery, supporting working memory, and the preparation of haptic matching.  相似文献   

7.
Cortical connections of the macaque anterior intraparietal (AIP) area   总被引:1,自引:0,他引:1  
We traced the cortical connections of the anterior intraparietal (AIP) area, which is known to play a crucial role in visuomotor transformations for grasping. AIP displayed major connections with 1) areas of the inferior parietal lobule convexity, the rostral part of the lateral intraparietal area and the SII region; 2) ventral visual stream areas of the lower bank of the superior temporal sulcus and the middle temporal gyrus; and 3) the premotor area F5 and prefrontal areas 46 and 12. Additional connections were observed with the caudal intraparietal area and the ventral part of the frontal eye field. This study suggests that visuomotor transformations for object-oriented actions, processed in AIP, rely not only on dorsal visual stream information related to the object's physical properties but also on ventral visual stream information related to object identity. The identification of direct anatomical connections with the inferotemporal cortex suggests that AIP also has a unique role in linking the parietofrontal network of areas involved in sensorimotor transformations for grasping with areas involved in object recognition. Thus, AIP could represent a crucial node in a cortical circuit in which hand-related sensory and motor signals gain access to representations of object identity for tactile object recognition.  相似文献   

8.
Do spatial operations on mental images and those on visually presented material share the same neural substrate? We used the high spatial resolution of functional magnetic resonance imaging to determine whether areas in the parietal lobe that have been implicated in the spatial transformation of visual percepts are also activated during the generation and spatial analysis of imagined objects. Using a behaviourally controlled mental imagery paradigm, which did not involve any visual stimulation, we found robust activation in posterior parietal cortex in both hemispheres. We could thus identify the subset of spatial analysis-related activity that is involved in spatial operations on mental images in the absence of external visual input. This result clarifies the nature of top-down processes in the dorsal stream of the human cerebral cortex and provides evidence for a specific convergence of the pathways of imagery and visual perception within the parietal lobes.  相似文献   

9.
Hearing lips: gamma-band activity during audiovisual speech perception   总被引:2,自引:0,他引:2  
Auditory pattern changes have been shown to elicit increases in magnetoencephalographic gamma-band activity (GBA) over left inferior frontal cortex, forming part of the putative auditory ventral "what" processing stream. The present study employed a McGurk-type paradigm to assess whether GBA would be associated with subjectively perceived changes even when auditory stimuli remain unchanged. Magnetoencephalograms were recorded in 16 human subjects during audiovisual mismatch perception. Both infrequent visual (auditory /ta/ + visual /pa/) and acoustic deviants (auditory/pa/ + visual /ta/) were compared with frequent audiovisual standards (auditory /ta/ and visual /ta/). Statistical probability mapping revealed spectral amplitude increases at approximately 75 and approximately 78 Hz to visual deviants. GBA to visual deviants peaked 160 ms after auditory stimulus onset over posterior parietal cortex, at 270 ms over occipital areas and at 320 ms over left inferior frontal cortex. The latter GBA enhancement was consistent with the increase observed previously to pure acoustic mismatch, supporting a role of left inferior frontal cortex for the representation of perceived auditory pattern change. The preceding gamma-band changes over posterior areas may reflect processing of incongruent lip movements in visual motion areas and back-projections to earlier visual cortex.  相似文献   

10.
We investigated whether the visual hMT+ cortex plays a role in supramodal representation of sensory flow, not mediated by visual mental imagery. We used functional magnetic resonance imaging to measure neural activity in sighted and congenitally blind individuals during passive perception of optic and tactile flows. Visual motion-responsive cortex, including hMT+, was identified in the lateral occipital and inferior temporal cortices of the sighted subjects by response to optic flow. Tactile flow perception in sighted subjects activated the more anterior part of these cortical regions but deactivated the more posterior part. By contrast, perception of tactile flow in blind subjects activated the full extent, including the more posterior part. These results demonstrate that activation of hMT+ and surrounding cortex by tactile flow is not mediated by visual mental imagery and that the functional organization of hMT+ can develop to subserve tactile flow perception in the absence of any visual experience. Moreover, visual experience leads to a segregation of the motion-responsive occipitotemporal cortex into an anterior subregion involved in the representation of both optic and tactile flows and a posterior subregion that processes optic flow only.  相似文献   

11.
Motor imagery is a type of mental practice that involves imagining the body performing a movement in the absence of motor output. Dance training traditionally incorporates mental practice techniques, but quantitative effects of motor imagery on the performance of dance movements are largely unknown. This pilot study compared the effects of two different imagery modalities, external visual imagery and kinesthetic imagery, on pelvis and hip kinematics during two technical dance movements, plié and sauté. Each of three female dance students (mean age = 19.7 years, mean years of training = 10.7) was assigned to use a type of imagery practice: visual imagery, kinesthetic imagery, or no imagery. Effects of motor imagery on peak external hip rotation varied by both modality and task. Kinesthetic imagery increased peak external hip rotation for pliés, while visual imagery increased peak external hip rotation for sautés. Findings suggest that the success of motor imagery in improving performance may be task-specific. Dancers may benefit from matching imagery modality to technical tasks in order to improve alignment and thereby avoid chronic injury.  相似文献   

12.
The neural substrates of biological motion perception: an fMRI study   总被引:4,自引:4,他引:0  
We used fMRI to identify the brain areas related to the perception of biological motion (4 T EPI; whole brain). In experiment 1, 10 subjects viewed biological motion (a human figure jumping up and down, composed of 21 dots), alternating with a control stimulus created by applying autoregressive models to the biological motion stimulus (such that the dots' speeds and amplitudes were preserved whereas their linking structure was not). The lengths of the stimulus bouts varied, and therefore the transitions between biological motion and control stimuli were unpredictable. Subjects had to indicate with a button press when each transition occurred. In a related biological motion task, subjects detected short (1 s) disturbances within these displays. We also examined the neural substrates of motion and shape perception, as well as motor imagery, to determine whether or not the cortical regions involved in these processes are also recruited during biological motion perception. Subjects viewed linear motion displays alternating with static dots and a series of common objects alternating with band-limited white noise patterns. Subjects also generated imagery of their own arm movements alternating with visual imagery of common objects. Biological motion specific BOLD signal was found within regions of the lingual gyrus at the cuneus border, showing little overlap with object recognition, linear motion or motion imagery areas. The lingual gyrus activation was replicated in a second experiment that also mapped retinotopic visual areas in three subjects. The results suggest that a region of the lingual gyrus within VP is involved in higher-order processing of motion information.  相似文献   

13.
The activity of single cells was recorded in behaving monkeys while they performed several eye-hand directional motor tasks. The results revealed that in parietal area 7a there exists a directional representation of eye and hand motor space that, contrary to that of superior parietal, premotor and motor cortex, is highly skewed toward the contralateral workspace. In man, the loss of this representation after parietal lesions might explain the emergence of the directional movement disorders of neglect. In fact, although unilateral neglect is consequence of damage to different brain structures, it is more common and enduring after right inferior parietal cortex lesions. Neglect patients ignore and avoid interacting with events occurring in the contralesional part of their physical and mental space. Current theories distinguish perceptual from motor components of neglect. One key feature of the latter is directional hypokinesia, an impaired representation of space for action, evident as difficulty to plan hand movements toward the contralesional part of egocentric space. An impairment of a similar nature is also observed for eye movements. In this study, we offer an interpretation of directional movement disorders of neglect from a physiological perspective, i.e. by focusing on the mechanisms underlying the representation of visuomotor space in parietal cortex.  相似文献   

14.
Motor imagery, the 'mental rehearsal of motor acts without overt movements', involves either a visual representation (visual imagery, VI) or mental simulation of movement, associated with a kinesthetic feeling (kinetic imagery, KI). Previous brain imaging work suggests that patterns of brain activation differ when comparing execution (E) with either type of imagery but the functional connectivity of the participating networks has not been studied. Using functional magnetic resonance imaging (fMRI) and structural equation modeling, this study elucidates the inter-relationships among the relevant areas for each of the three motor behaviors. Our results suggest that networks underlying these behaviors are not identical, despite the extensive overlap between E and KI. Inputs to M1, which are facilitatory during E, have the opposite effect during KI, suggesting a physiological mechanism whereby the system prevents overt movements. Finally, this study highlights the role of the connection of superior parietal lobule to the supplementary motor area in both types of motor imagery.  相似文献   

15.
16.
Human neuroimaging studies conducted during visuospatial working memory tasks have inconsistently detected activation in the prefrontal cortical areas depending presumably on the type of memory and control tasks employed. We used functional magnetic resonance imaging to study brain activation related to the performance of a visuospatial n-back task with different memory loads (0-back, 1-back and 2-back tasks). Comparison of the 2-back versus 0-back tasks revealed consistent, bilateral activation in the medial frontal gyrus (MFG), superior frontal sulcus and adjacent cortical tissue (SFS/SFG) in all subjects and in six out of seven subjects in the intraparietal sulcus (IPS). Activation was also detected in the inferior frontal gyrus, medially in the superior frontal gyrus, precentral gyrus, superior and inferior parietal lobuli, occipital visual association areas, anterior and posterior cingulate areas and in the insula. Comparison between the 1- back versus 0-back tasks revealed activation only in a few brain areas. Activation in the MFG, SFS/SFG and IPS appeared dependent on memory load. The results suggest that the performance of a visuospatial working memory task engages a network of distributed brain areas and that areas in the dorsal visual pathway are engaged in mnemonic processing of visuospatial information.   相似文献   

17.
Sign language activates the auditory cortex of deaf subjects, which is evidence of cross-modal plasticity. Lip-reading (visual phonetics), which involves audio-visual integration, activates the auditory cortex of hearing subjects. To test whether audio-visual cross-modal plasticity occurs within areas involved in cross-modal integration, we used functional MRI to study seven prelingual deaf signers, 10 hearing non-signers and nine hearing signers. The visually presented tasks included mouth-movement matching, random-dot motion matching and sign-related motion matching. The mouth-movement tasks included conditions with or without visual phonetics, and the difference between these was used to measure the lip-reading effects. During the mouth-movement matching tasks, the deaf subjects showed more prominent activation of the left planum temporale (PT) than the hearing subjects. During dot-motion matching, the deaf showed greater activation in the right PT. Sign-related motion, with or without a lexical component, activated the left PT in the deaf signers more than in the hearing signers. These areas showed lip-reading effects in hearing subjects. These findings suggest that cross-modal plasticity is induced by auditory deprivation independent of the lexical processes or visual phonetics, and this plasticity is mediated in part by the neural substrates of audio-visual cross-modal integration.  相似文献   

18.
There is a long-standing debate as to whether visual mental imagery relies entirely on symbolic (language-like) representations or also relies on depictive (picture-like) representations. We sought to discover whether visual mental imagery could evoke cortical activity with precise visual field topography (retinotopy). Participants received three conditions: the perception condition consisted of a standard retinotopic mapping procedure, where two flickering checkerboard wedges rotated around a central fixation point. The imagery and attention conditions consisted of the same stimulus, but only the outer arcs of the wedges were visible. During imagery, participants mentally reproduced the stimulus wedges, using the stimulus arcs as a guide. The attention condition required either distributed attention or focused attention to where the stimulus wedges would have been. Event-related analysis revealed that the imagery (greater than either form of attention) retinotopic maps were similar to the perception maps. Moreover, blocked analysis revealed similar perception and imagery effects in human motion processing region MT+. These results support the depictive view of visual mental imagery.  相似文献   

19.
To evaluate the effect of an abstract motivational incentive on top-down mechanisms of visual spatial attention, 10 subjects engaged in a target detection task and responded to targets preceded by spatially valid (predictive), invalid (misleading) or neutral central cues under three different incentive conditions: win money (WIN), lose money (LOSE), and neutral (neither gain nor lose). Activation in the posterior cingulate cortex was correlated with visual spatial expectancy, defined as the degree to which the valid cue benefited performance as evidenced by faster reaction times compared to non-directional cues. Winning and losing money enhanced this relationship via overlapping but independent limbic mechanisms. In addition, activity in the inferior parietal lobule was correlated with disengagement (the degree to which invalid cues diminished performance). This relationship was also enhanced by monetary incentives. Finally, incentive enhanced the relationship of activation in the visual cortex to visual spatial expectancy and disengagement for both types of incentive (WIN and LOSE). These results show that abstract incentives enhance neural processing within the attention network in a process- and valence-selective manner. They also show that different cognitive and motivational mechanisms may produce a common effect upon unimodal cortices in order to enhance processing to serve the current behavioral goal.  相似文献   

20.
The objective of this study was to investigate brain areas involved in distinguishing sensory events caused by self-generated movements from similar sensory events caused by externally generated movements using functional magnetic resonance imaging. Subjects performed 4 types of movements: 1) self-generated voluntary movement with visual feedback, 2) externally generated movement with visual feedback, 3) self-generated voluntary movement without visual feedback, and 4) externally generated movement without visual feedback, this design. This factorial design makes it possible to study which brain areas are activated during self-generated ankle movements guided by visual feedback as compared with externally generated movements under similar visual and proprioceptive conditions. We found a distinct network, comprising the posterior parietal cortex and lateral cerebellar hemispheres, which showed increased activation during visually guided self-generated ankle movements. Furthermore, we found differential activation in the cerebellum depending on the different main effects, that is, whether movements were self- or externally generated regardless of visual feedback, presence or absence of visual feedback, and activation related to proprioceptive input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号