首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Journal of neurogenetics》2013,27(4):170-175
Abstract

Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common inherited muscle diseases caused by mutations in the dystrophin gene. The reading frame rule explains the genotype-phenotype relationship in DMD/BMD. In Vietnam, extensive mutation analysis has never been conducted in DMD/BMD. Here, 152 Vietnamese muscular dystrophy patients were examined for dystrophin exon deletion by amplifying 19 deletion-prone exons and deletion ends were confirmed by dystrophin cDNA analysis if necessary. The result was that 82 (54%) patients were found to have exon deletions, thus confirming exact deletion ends. A further result was that 37 patterns of deletion were classified. Deletions of exons 45–50 and 49–52 were the most common patterns identified, numbering six cases each (7.3%). The reading frame rule explained the genotype-phenotype relationship, but not five (6.1%) DMD cases. Each of five patients had deletions of exons 11–27 in common. The applicability of the therapy producing semifunctional in frame mRNA in DMD by inducing skipping of a single exon was examined. Induction of exon 51 skipping was ranked at top priority, since 16 (27%) patients were predicted to have semifunctional mRNA skipping. Exons 45 and 53 were the next ranked, with 12 (20%) and 11 (18%) patients, respectively. The largest deletion database of the dystrophin gene, established in Vietnamese DMD/BMD patients, disclosed a strong indication for exon-skipping therapy.  相似文献   

3.
4.
5.
Duchenne muscular dystrophy (DMD) is the most common childhood neuromuscular disorder. It is caused by mutations in the DMD gene that disrupt the open reading frame (ORF) preventing the production of functional dystrophin protein. The loss of dystrophin ultimately leads to the degeneration of muscle fibres, progressive weakness and premature death. Antisense oligonucleotides (AOs) targeted to splicing elements within DMD pre-mRNA can induce the skipping of targeted exons, restoring the ORF and the consequent production of a shorter but functional dystrophin protein. This approach may lead to an effective disease modifying treatment for DMD and progress towards clinical application has been rapid. Less than a decade has passed between the first studies published in 1998 describing the use of AOs to modify the DMD gene in mice and the results of the first intramuscular proof of concept clinical trials. Whilst phase II and III trials are now underway, the heterogeneity of DMD mutations, efficient systemic delivery and targeting of AOs to cardiac muscle remain significant challenges. Here we review the current status of AO-mediated therapy for DMD, discussing the preclinical, clinical and regulatory hurdles and their possible solutions to expedite the translation of AO-mediated exon skipping therapy to clinic.  相似文献   

6.
7.
Out of three mutations in the dystrophin gene that cause Duchenne muscular dystrophy (DMD), the most common, serious childhood muscle wasting disease, two are genomic deletions of one or more exons that disrupt the reading frame. Specific removal of an exon flanking a genomic deletion using antisense oligonucleotide intervention during pre-RNA processing can restore the reading frame and could potentially reduce disease severity. We describe a rare dystrophin gene rearrangement; inversion of approximately 28 kb, flanked by a 10-bp duplication and an 11-kb deletion, which led to the omission of exons 49 and 50 from the mature mRNA and the variable inclusion of several pseudoexons. In vitro transfection of cultured patient cells with antisense oligonucleotides directed at exon 51 induced efficient removal of that exon, as well as one of the more commonly included pseudoexons, suggesting closely coordinated splicing of these exons. Surprisingly, several antisense oligonucleotides (AOs) directed at this pseudoexon had no detectable effect on the splicing pattern, while all AOs directed at the other predominant pseudoexon efficiently excised that target. Antisense oligomers targeting dystrophin exon 51 for removal are currently undergoing clinical trials. Despite the unique nature of the dystrophin gene rearrangement described here, a personalized multiexon skipping treatment is applicable and includes one compound entering clinical trials for DMD.  相似文献   

8.
9.
This report is the second part of a trilogy from a multidisciplinary study which was undertaken to record the relationships between clinical severity and dystrophin gene and protein expression. The aim in part 2 was to correlate the effect of gene deletions on protein expression in individual patients with well defined clinical phenotypes. Among the DMD patients, most of the deletions/duplications disrupted the open reading frame, but three patients had in frame deletions. Some of the intermediate D/BMD patients had mutations which were frameshifting while others were in frame. All of the deletions/duplications in the BMD patients maintained the open reading frame and 25/26 deletions in typical BMD group 5 started with exon 45. The deletion of single exon 44 was the most common mutation in patients from groups 1 to 3. Dystrophin was detected in sections and blots from 58% of the DMD patients with a size that was compatible with synthesis from mRNA in which the reading frame had been restored. Certain deletions were particularly associated with the occurrence of limited dystrophin synthesis in DMD patients. For example, 9/11 DMD patients missing single exons had some detectable dystrophin labelling compared with 10/24 who had deletions affecting more than one exon. All patients missing single exon 44 or 45 had some dystrophin. Deletions starting or finishing with exons 3 or 51 (8/9) cases were usually associated with dystrophin synthesis whereas those starting or finishing with exons 46 or 52 (11/11) were not. Formal IQ assessments (verbal, performance, and full scores) were available for 47 patients. Mean IQ score among the DMD patients was 83 and no clear relationship was found between gene mutations and IQ. The mutations in patients with a particularly severe deficit of verbal IQ were spread throughout the gene.  相似文献   

10.
Antisense‐mediated exon skipping aiming for reading frame restoration is currently a promising therapeutic application for Duchenne muscular dystrophy (DMD). This approach is mutation specific, but as the majority of DMD patients have deletions that cluster in hotspot regions, the skipping of a small number of exons is applicable to relatively large numbers of patients. To assess the actual applicability of the exon skipping approach, we here determined for deletions, duplications and point mutations reported in the Leiden DMD mutation database, which exon(s) should be skipped to restore the open reading frame. In theory, single and double exon skipping would be applicable to 79% of deletions, 91% of small mutations, and 73% of duplications, amounting to 83% of all DMD mutations. Exon 51 skipping, which is being tested in clinical trials, would be applicable to the largest group (13%) of all DMD patients. Further research is needed to determine the functionality of different in‐frame dystrophins and a number of hurdles has to be overcome before this approach can be applied clinically. Hum Mutat 0, 1–7, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
Our Translational Gene Therapy Center has used small molecules for exon skipping and mutation suppression and gene transfer to replace or provide surrogate genes as tools for molecular-based approaches for the treatment of muscular dystrophies. Exon skipping is targeted at the pre-mRNA level allowing one or more exons to be omitted to restore the reading frame. In Duchenne Muscular Dystrophy (DMD), clinical trials have been performed with two different oligomers, a 2'O-methyl-ribo-oligonucleoside-phosphorothioate (2'OMe) and a phosphorodiamidate morpholino (PMO). Both have demonstrated early evidence of efficacy. A second molecular approach involves suppression of stop codons to promote readthrough of the DMD gene. We have been able to establish proof of principle for mutation suppression using the aminoglycoside, gentamicin. A safer, orally administered, alternative agent referred to as Ataluren (PTC124) has been used in clinical trials and is currently under consideration for approval by the FDA. Using a gene therapy approach, we have completed two trials and have initiated a third. For DMD, we used a mini-dystrophin transferred in adeno-associated virus (AAV). In this trial an immune response was seen directed against transgene product, a quite unexpected outcome that will help guide further studies. For limb girdle muscular dystrophy 2D (alpha-sarcoglycan deficiency), the transgene was again transferred using AAV but in this study, a muscle specific creatine kinase promoter controlled gene expression that persisted for six months. A third gene therapy trial has been initiated with transfer of the follistatin gene in AAV directly to the quadriceps muscle. Two diseases with selective quadriceps muscle weakness are undergoing gene transfer including sporadic inclusion body myositis (sIBM) and Becker muscular dystrophy (BMD). Increasing the size and strength of the muscle is the goal of this study. Most importantly, no adverse events have been encountered in any of these clinical trials.  相似文献   

13.
The clinical progression of Duchenne muscular dystrophy (DMD)patients with deletions can be predicted in 93% of cases bywhether the deletion maintains or disrupts the translationalreading frame (frameshift hypothesis). We have identified andstudied a number of patients who have deletions that do notconform to the translational frame hypothesis. The most commonexception to the frameshift hypothesis is the deletion of exons3 to 7 which disrupts the translational reading frame. We identifieda Becker muscular dystrophy (BMD) patient, an intermediate,and a DMD patient with this deletion. In all three cases, dystrophinwas detected and localized to the membrane. One DMD patientwith an inframe deletion of exons 4–18 produced no dystrophin.One patient with a mild intermediate phenotype and a deletionof exon 45, which shifts the reading frame, produced no dystrophin.Two patients with large inframe deletions had discordant phenotypes(exons 3–41, DMD; exons 13–48, BMD), but both produceddystrophin that localized to the sarcolemma. The DMD patient,113, indicates that dystrophin with an intact carboxy terminuscan be produced in Duchenne patients at levels equivalent tosome Beckers. The dystrophin analysis from these patients, togetherwith patients reported in the literature, indicate that morethan one domain can localize dystrophin to the sarcolemma. Lastely,the data shows that although most patients show correlationof clinical severity to molecular data, there are rare patientswhich do not conform.  相似文献   

14.
15.
16.
Duchenne and Becker muscular dystrophies (DMD and BMD) are muscle-wasting diseases caused by mutations in the DMD gene-encoding dystrophin. Usually, out-of-frame deletions give rise to DMD, whereas in-frame deletions result in BMD. BMD patients exhibit a less severe disease because an abnormal but functional dystrophin is produced. This is the rationale for attempts to correct the reading frame by using an exon-skipping strategy. In order to apply this approach to a larger number of patients, a multi-exon skipping strategy of exons 45-55 has been proposed, because it should correct the mRNA reading frame in almost 75% of DMD patients with a deletion. The resulting dystrophin lacks part of the binding site for the neuronal nitric oxide synthase (nNOSμ), which normally binds to spectrin-like repeats 16 and 17 of the dystrophin. Since these domains are encoded by exons 42-45, we investigated the nNOSμ status in muscle biopsies from 12 BMD patients carrying spontaneous deletions spaning exons 45-55. We found a wide spectrum of nNOSμ expression and localization. The strictly cytosolic mislocalization of nNOSμ was associated with the more severe phenotypes. Cytosolic NO production correlated with both hypernitrosylation of the sarcoplasmic reticulum calcium-release-channel ryanodine receptor type-1 (RyR1) and release of calstabin-1, a central hub of Ca(2+) signaling and contraction in muscle. Finally, this study shows that the terminal truncation of the nNOS-binding domain in the 'therapeutic' del45-55 dystrophin is not innocuous, since it can perturb the nNOS-dependent stability of the RyR1/calstabin-1 complex.  相似文献   

17.
18.
A new point mutation in exon 12 of the dystrophin gene was identified in a DMD patient using multiple SSCP analysis, which allows the simultaneous study of several exons. The mutation is an A insertion at position 1580 of the cDNA sequence, leading to a stop codon in the translational reading frame. This mutation was not observed in a sample of 70 DMD patients.  相似文献   

19.
20.
背景:Duchenne型肌营养不良和Becker型进行性肌营养不良都是dystrophin基因突变所致,但后者临床表型较轻。“阅读框规则”可解释大部分基因型与临床型关系,但累及疏水区段的整码突变也可导致Duchenne型肌营养不良。因此很有必要了解疏水区域在dystrophin中的功能,且这些疏水区段的三维结构及功能在发病机制中所起的具体作用仍未阐明。 目的:通过Kyte&Doolittle平均疏水轮廓分析研究dystrophin的疏水区段。利用swiss-model三维重构dystrophin的疏水区段阐述其在发病机制中所起的作用。 方法:参考莱顿开放数据库(http://www.dmd.nl/)及收集中山大学附属第一医院2002年至2013年确诊Duchenne型进行性肌营养不良或Becker型进行性肌营养不良的缺失型整码突变患者资料共1 038例,分析其临床型与基因型关系。使用bioedit软件计算dystrophin的平均疏水轮廓及利用swiss-model三维重构疏水区段,结合临床型和基因型关系确定dystrophin重要功能区。 结果与结论:dystrophin存在4个疏水区段,分别为肌动蛋白结合区内的Calponin同源区2、中央棒区内的重复区16、第三铰链区和EF手型区。第1,2,4疏水区段是dystrophin糖蛋白复合物中dystrophin与其他糖蛋白的结合区域,其破坏严重影响dystrophin糖蛋白复合物功能,临床症状重。中央棒区在第三铰链区附近断裂后,HⅢ的无规则卷结构不容易与断端重复区的螺旋结构恢复连接。但第三铰链区同时缺失,其两端的重复区较容易重新连接,所以第3疏水区破坏后其临床症状反而较轻。提示dystrophin的疏水区段是其重要功能区,多是dystrophin糖蛋白复合物中dystrophin与相关蛋白的结合部位,在Duchenne型肌营养不良的发病机制中起重要作用。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号