首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gysin S  Lee SH  Dean NM  McMahon M 《Cancer research》2005,65(11):4870-4880
Expression of mutationally activated RAS is a feature common to the vast majority of human pancreatic adenocarcinomas. RAS elicits its effects through numerous signaling pathways including the RAF-->mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase [MEK]-->ERK MAP kinase pathway. To assess the role of this pathway in regulating cell proliferation, we tested the effects of pharmacologic inhibition of MEK on human pancreatic cancer cell lines. In eight cell lines tested, MEK inhibition led to a cessation of cell proliferation accompanied by G0-G1 cell cycle arrest. Concomitant with cell cycle arrest, we observed induced expression of p27Kip1, inhibition of cyclin/cyclin-dependent kinase 2 (cdk2) activity, accumulation of hypophosphorylated pRb, and inhibition of E2F activity. Using both antisense and RNA interference techniques, we assessed the role of p27Kip1 in the observed effects of MEK inhibition on pancreatic cancer cell proliferation. Inhibition of p27Kip1 expression in Mia PaCa-2 cells restored the activity of cyclin/cdk2, phosphorylation of pRb, and E2F activity and partially relieved the effects of U0126 on pancreatic cancer cell cycle arrest. Consistent with the effects of p27Kip1 on cyclin/cdk2 activity, inhibition of CDK2 expression by RNA interference also led to G0-G1 cell cycle arrest. These data suggest that the expression of p27Kip1 is downstream of the RAF-->MEK-->ERK pathway and that the regulated expression of this protein plays an important role in promoting the proliferation of pancreatic cancer cells. Moreover, these data suggest that pharmacologic inhibition of the RAF-->MEK-->ERK signaling pathway alone might tend to have a cytostatic, as opposed to a cytotoxic, effect on pancreatic cancer cells.  相似文献   

2.
Petrocelli T  Slingerland J 《Oncogene》2000,19(39):4480-4490
The activation of cell cycle checkpoints in response to genotoxic stressors is essential for the maintenance of genomic integrity. Although most prior studies of cell cycle effects of UV irradiation have used UVC, this UV range does not penetrate the earth's atmosphere. Thus, we have investigated the mechanisms of ultraviolet B (UVB) irradiation-induced cell cycle arrest in a biologically relevant target cell type, the early stage human melanoma cell line, WM35. Irradiation of WM35 cells with UVB resulted in arrests throughout the cell cycle: at the G1/S transition, in S phase and in G2. G1 arrest was accompanied by increased association of p21 with cyclin E/cdk2 and cyclin A/cdk2, increased binding of p27 to cyclin E/cdk2 and inhibition of these kinases. A loss of Cdc25A expression was associated with an increased inhibitory phosphotyrosine content of cyclin E- and cyclin A-associated cdk2 and may also contribute to G1 arrest following UVB irradiation. The association of Cdc25A with 14-3-3 was increased by UVB. Reduced cyclin D1 protein and increased binding of p21 and p27 to cyclin D1/cdk4 complexes were also observed. The loss of cyclin D1 could not be attributed to inhibition of either MAPK or PI3K/PKB pathways, since both were activated by UVB. Cdc25B levels fell and the remaining protein showed an increased association with 14-3-3 in response to UVB. Losses in cyclin B1 expression and an increased binding of p21 to cyclin B1/cdk1 complexes also contributed to inhibition of this kinase activity, and G2/M arrest. Oncogene (2000) 19, 4480 - 4490.  相似文献   

3.
Human T-cells immortalized (interleukin-2 [IL-2] dependent) by the human T-cell lymphotropic/leukemia virus type I (HTLV-I), in time, become transformed (IL-2 independent). To understand the biochemical basis of this transition, we have used the sibling HTLV-I-infected T-cell lines, N1186 (IL-2 dependent) and N1186-94 (IL-2 independent), as models to assess the responses to antiproliferative signals. In N1186 cells arrested in G1 after serum/interleukin-2 (IL-2) deprivation, downregulation of the cyclin E-CDK2 kinase activity correlated with decreased phosphorylation of CDK2 and accumulation of p27Kip1 bound to the cyclin E-CDK2 complex, as seen in normal activated PBMCs (peripheral blood mononuclear cells). In contrast, N1186-94 cells failed to arrest in G1 upon serum starvation, displayed constitutive cyclin E-associated kinase activity, and, although CDK2 was partially dephosphorylated, the amount of p27Kip1 bound to the complex did not increase. This observation, extended to two other IL-2-dependent as well as to three IL-2-independent HTLV-I-infected T-cell lines, suggests that the lack of cyclin E-CDK2 kinase downregulation found in the late phase of HTLV-I transformation may correlate with insufficient amounts of p27Kip1 associated with the cyclin E-CDK2 complex. Reconstitution experiments demonstrated that the addition of p27Kip1 to lysates from N1186-94 starved cells resulted in the downregulation of cyclin E-associated kinase activity supporting the notion that the unresponsiveness of the cyclin E-CDK2 complex to growth inhibitory signals may be due to inadequate amounts of p27Kip1 assembled with the complex in HTLV-I-transformed T-cells. In fact, the amount of p27Kip1 protein was lower in most HTLV-I-transformed (IL-2-independent) than in the immortalized (IL-2-dependent) HTLV-I-infected T-cells. Furthermore, specific inhibitors of the phosphatidylinositol 3-kinase (P13K) induced an increase of p27Kip1 protein levels, which correlated with G1 arrest, in both IL-2-dependent and IL-2-independent HTLV-I-infected T-cells. Altogether, these results suggest that maintaining a low level of expression of p27Kip1 is a key event in HTLV-I transformation.  相似文献   

4.
5.
p27Kip1 is required for PTEN-induced G1 growth arrest   总被引:20,自引:0,他引:20  
The tumor suppressor PTEN is one of the most commonly inactivated genes in human cancer. Glioblastoma multiforme cells harboring mutant PTEN have abnormally high levels of 3' phosphoinositides and elevated protein kinase B activity. Expression of wild-type PTEN in glioma cells, containing endogenous mutant PTEN, reduces 3' phosphoinositides levels, inhibits PKB activity, and induces G1 cell cycle arrest. We investigated the mechanism of the PTEN-induced growth arrest in glioma cell lines. Expression of PTEN is associated with increased expression of p27Kip1, decreased expression of cyclins A and D3, inhibition of cdk2 activity, and dephosphorylation of pRb. Inactivation of p53, by the human papilloma virus E6 oncoprotein, does not prevent PTEN-induced G1 arrest, implying that p53 is not required for G1 arrest. In contrast, p27Kip1 antisense oligonucleotides abrogated the growth arrest induced by PTEN. Furthermore, blocking p27Kip1 expression prevented the PTEN-induced reduction of cyclin-dependent kinase 2 activity, indicating that p27Kip1 functions upstream of cyclin-dependent kinase 2 in the PTEN regulatory cascade. These results implicate p27Kip1 as a critical mediator of PTEN-induced G1 arrest.  相似文献   

6.
Numerous studies have demonstrated the anticancer activity of the tomato carotenoid, lycopene. However, the molecular mechanism of this action remains unknown. Lycopene inhibition of human breast and endometrial cancer cell growth is associated with inhibition of cell cycle progression at the G(1) phase. In this study we determined the lycopene-mediated changes in the cell cycle machinery. Cells synchronized in the G(1) phase by serum deprivation were treated with lycopene or vehicle and restimulated with 5% serum. Lycopene treatment decreased serum-induced phosphorylation of the retinoblastoma protein and related pocket proteins. This effect was associated with reduced cyclin-dependent kinase (cdk4 and cdk2) activities with no alterations in CDK protein levels. Lycopene caused a decrease in cyclin D1 and D3 levels whereas cyclin E levels did not change. The CDK inhibitor p21(Cip1/Waf1) abundance was reduced while p27(Kip1) levels were unaltered in comparison to control cells. Serum stimulation of control cells resulted in reduction in the p27 content in the cyclin E--cdk2 complex and its accumulation in the cyclin D1--cdk4 complex. This change in distribution was largely prevented by lycopene treatment. These results suggest that lycopene inhibits cell cycle progression via reduction of the cyclin D level and retention of p27 in cyclin E--cdk2, thus leading to inhibition of G(1) CDK activities.  相似文献   

7.
8.
Characteristics of treatment-induced cell cycle arrest are important for in vitro and in vivo sensitivity of acute myeloid leukemia (AML) cells to cytotoxic drugs. We analyzed the expression of the major G1 cell cycle regulators (p21Cip1, p27Kip1, cyclins D, cyclin E and pRb) in 41 fresh AML cell samples. The level of p27 expression was the only factor correlated with the response to chemotherapy, a high level of p27 expression being predictive of complete remission. There was a close relation between expression of pRb, cyclin D2 and FAB subtype, illustrated by the absence of both proteins in most samples having a monocytic component (M4, M5). We also assessed the expressions of pRb, cyclin E, p21 and p27 and the activity of cdk2, the major regulator of S-phase entry, after exposure to cytosine-arabinoside (AraC) and daunorubicin (DNR), and found these proteins could characterize time- and dose-dependent cellular response to each drug. We observed hyperphosphorylated pRb, increased levels of cyclin E and a high cdk2 activity, but no p21 induction, in AML cells exposed to 10(-6) M AraC. After exposure to 10(-5) M AraC, corresponding to the serum concentration reached in high-dose AraC regimens (HDAraC), a strong p21 induction was observed, associated with similarly overexpressed cyclin E and even higher cdk2 activity than after 10(-6) M AraC, while apoptosis was significantly increased. These data suggest that cdk2 activity is likely to play a role in AraC-induced apoptosis in AML cells. This mechanism may account for high efficacy of HDAraC in cells showing little sensitivity to conventional AraC doses.  相似文献   

9.
10.
Schmidt M  Lu Y  Liu B  Fang M  Mendelsohn J  Fan Z 《Oncogene》2000,19(20):2423-2429
The impact of the cyclin dependent kinase (CDK) inhibitors p21Waf1 and p27Kip1 on paclitaxel-mediated cytotoxicity was investigated in RKO human colon adenocarcinoma cells with the ecdysone-inducible expression of p21Waf1 or p27Kip1. Ectopic expression of p27Kip1 arrested cells at G1 phase, whereas p21Waf1 expression arrested cells at G1 and G2. Expression of p21Waf1 after paclitaxel treatment produced much greater resistance to paclitaxel than did expression of p27Kip1. We attributed this difference to the additional block at G2 induced by p21Waf1, which prevented cells from entering M phase and becoming paclitaxel susceptible. Expression of p21Waf1 inhibited p34cdc2 activity and markedly reduced paclitaxel-mediated mitotic arrest, from 87.5 to 23%. In contrast, p27Kip1 expression also inhibited p34cdc2 but reduced mitotic arrest only slightly, from 87. 4 to 74.5%. We concluded that the G2 block produced by p21Waf1, but not by p27Kip1, contributed to their unequal modulation of sensitivity to paclitaxel-mediated apoptosis in RKO cells, and there is no causal relationship between paclitaxel-mediated cytotoxicity and elevation of p34cdc2 activity.  相似文献   

11.
12.
Cross-linking of the B cell antigen receptor (BCR) on immature WEHI 231 B cells results in G1 cell cycle arrest and apoptosis. Here we investigated the molecular mechanisms that are necessary and sufficient for these changes to occur. We show that BCR stimulation of WEHI 231 cells results in down-regulation of cyclin D2 and up-regulation of p27(Kip1), which are associated with pocket protein hypophosphorylation and E2F inactivation. Ectopic expression of p27(Kip1) by TAT-fusion protein or retroviral transduction is sufficient to cause G1 cell cycle arrest, followed by apoptosis. In contrast, over-expression of cyclin D2 overcomes the cell cycle arrest and apoptosis induced by anti-IgM, indicating that down-regulation of cyclin D2 is necessary for the cell cycle arrest and apoptosis activated by BCR stimulation. Thus, cyclin D2 and p27(Kip1) have opposing roles in these pathways and our data also suggest that cyclin D2 functions upstream of p27(Kip1) and the pRB pathway and therefore plays an essential part in integrating the signals from BCR with the cell cycle machinery. We next investigated which signal transduction pathways triggered by the BCR regulate cell proliferation and apoptosis via cyclin D2 and p27(Kip1). Inhibition of PI3-K signalling by LY294002 down-regulated cyclin D2 and up-regulated p27(Kip1) expression at both protein and RNA levels, mimicking the effects of BCR-stimulation. Furthermore, ectopic expression of a constitutively active form of AKT blocked the cell cycle arrest and apoptosis triggered by anti-IgM and also abrogated down-regulation of cyclin D2 and up-regulation of p27(Kip1) expression induced by BCR-engagement. These results indicate that BCR activation targets p27(Kip1) and cyclin D2 to mediate cell cycle arrest and apoptosis and that down-regulation of PI3-K/AKT activity post BCR stimulation is necessary for these to occur.  相似文献   

13.
Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1–3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4–2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.  相似文献   

14.
15.
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of growth arrested clonal B lymphocytes that undergo apoptosis when treated with fludarabine. To further explore the mechanism for the cell cycle arrest, we examined the expression and activity of cyclin-dependent kinases and inhibitors in primary B-CLL cells. We observed high levels of p27kip1, cyclin D2, cyclin E, cdk2, and cdk4 expression in freshly isolated B-CLL cells. Despite high levels of cyclins and cdks, little cdk2 or cdk4 activity was observed with p27kip1 in complex with cyclinD2/cdk4 and cyclin E/cdk2. Remarkably, when B-CLL cells were treated in vitro with fludarabine, p27kip1 underwent caspase-specific degradation accompanied by an increase in cdk4 activity. We conclude that the G0/G1 arrest of B-CLL cells may protect against apoptosis and that the decrease in p27kip1 expression by caspase cleavage may be a key step in chemotherapy-induced apoptosis in B-CLL.  相似文献   

16.
p27(Kip1) is a cyclin-dependent kinase inhibitor which regulates progression of cells from G1 into S phase in a cell cycle. Loss of p27(Kip1) has been associated with disease progression and an unfavorable outcome in several malignancies. In the present study, we conducted to examine whether up-regulation or down-regulation of p27(KiP1) can affect the growth of oral cancer cell (B88 cell) in vitro and in vivo. We constructed an expression vector containing sense- or antisense-oriented human p27(Kip1) cDNA with pcDNA3.1(Invitrogen). We transfected B88 cells with the sense or antisense expression vector to regulate the expression of p27(Kip1) gene in each transfectant. The expression of p27(Kip1) protein was up-regulated in the sense transfectants and down-regulated in the antisense transfectants. Moreover, up-regulation of p27(Kip1) protein exerted the growth inhibitory effect, and down-regulation of p27(Kip1) protein enhanced the growth of B88 cells in vitro and in vivo. Furthermore, we detected the G1 arrest and sub-G1 peak in the sense transfectants by flow cytometry analysis. These results suggest that up-regulation of p27(Kip1) protein may exert the growth inhibitory effects through induction of G1 arrest and apoptosis on oral cancer cell line.  相似文献   

17.
TGFbeta1 is a potent growth inhibitor of both primitive and more differentiated human myeloid leukemic cells. The extent of the growth inhibitory response to TGFbeta varies with cell type, and is not linked to stages of differentiation of cell lines. Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGFbeta1-mediated growth inhibition of human MV4-11 myeloid leukemia cells. Both G1-phase and G2-phase cyclins and cdks participate in the regulation of TGFbeta1-mediated growth inhibition of MV4-11 cells. By both depressing cdk2 synthesis and up-regulating cyclin E-associated p27, TGFbeta1 may magnify its inhibitory efficiency. TGFbeta1 also rapidly inhibits phosphorylation of pRb at several serine and threonine residues. The underphosphorylated pRb associates with E2F-4 in G1 phase, whereas the phosphorylated pRb mainly binds to E2F-1 and E2F-3 in proliferating MV4-11 cells. Since TGFbeta1 upregulates p130/E2F-4 complex formation and downregulates p107/E2F-4 complex formation, with E2F-4 levels remaining constant, our results suggest that E2F-4 is switched from p107 to pRb and p130 when cells exit from the cell cycle and arrest in G1 by TGFbeta1. In summary, TGFbeta1 inhibits growth of human myeloid leukemic cells through multiple pathways, whereas the "cdk inhibitor" p27 is both a positive and negative regulator.  相似文献   

18.
K Kurokawa  T Tanaka  J Kato 《Oncogene》1999,18(17):2718-2727
p19ARF encoded by the INK4a tumor suppressor gene locus functions upstream of p53 to induce cell cycle arrest. p19ARF can interact with MDM2 and p53 in cells ectopically overexpressing these three components, but the biochemical cascades from p19ARF to cell cycle arrest has not been fully elucidated. In this study, we generated stably transfected NIH3T3 cells that express exogenous p19ARF under the control of a heavy metal-inducible metalothionine promoter. Cells arrested in G1 by ectopically expressed p19ARF contained considerably reduced G1 cyclin dependent kinase (cdk2 and cdk4) activities. The expression of cyclin A (a regulatory subunit of cdk2) markedly decreased, while cyclin D1, the major cdk4 partner in fibroblasts, expressed at a slightly higher level and formed complexes with cdk2 and cdk6 in addition to cdk4. Induction of p19ARF activated p53 by increasing its stability, and allowed the expression of p21Cip1, which bound to all of the cyclin D1-cdk complexes (cyclin D1-cdk2, -cdk4, and -cdk6) thereby inhibiting their kinase activities. p19ARF formed complexes with several cellular proteins including mouse MDM2. The majority of MDM2 was found in the complex with p19ARF, while no p53 was detected in association with p19ARF. Thus, we propose that p19ARF neutralizes MDM2 by sequestration from p53, which results in activation of p53, inhibition of G1 cyclin-cdk activities, and G1 arrest.  相似文献   

19.
Oncostatin M has been characterized as a potent growth inhibitor for various tumor cells. Oncostatin M-treated glioblastoma cells cease proliferation and instigate astrocytal differentiation. The oncostatin M-induced cell cycle arrest in G(1) phase is characterized by increased level of the cyclin-dependent kinase (CDK) inhibitory proteins p21(Cip1/Waf1/Sdi1) and p27(Kip1). Induction of p21 protein corresponds to increased mRNA level, whereas p27 accumulates due to increased stability of the protein. Interestingly, stabilization of p27(Kip1) occurs even in S phase, showing that p27 stabilization is a direct consequence of oncostatin M signaling and not a result of the cell cycle arrest. Degradation of p27 in late G(1) and S phase is initiated by the ubiquitin ligase complex SCF-Skp2/Cks1. Oncostatin M inhibits expression of two components of this E3 ligase complex (Skp2 and Cks1). Although combined overexpression of Skp2 and Cks1 rescues p27 degradation in S phase, it can not override p27 accumulation in G(1) phase and cell cycle arrest by oncostatin M. In addition to increasing Cdk inhibitor level, oncostatin M also impairs cyclin A expression. Cyclin A mRNA and protein level decline shortly after oncostatin M addition. The accumulation of two CDK inhibitor proteins and the repression of cyclin A expression may explain the broad and potent antiproliferative effect of the cytokine.  相似文献   

20.
T Shiozawa  S Shiohara  M Kanai  I Konishi  S Fujii  T Nikaido 《Cancer》2001,92(12):3005-3011
BACKGROUND: Abnormality of cell cycle regulators and tumor suppressors, such as cyclin dependent kinase inhibitors (cdkIs), has been reported in malignant tumors. The current study was undertaken to examine the involvement of a cdkI, p27(Kip1) (p27), in the neoplastic process of the uterine cervical epithelium. METHODS: Immunohistochemical staining of p27 was performed in samples of normal cervical tissue (30 samples), cervical intraepithelial neoplasias (CINs; 17 samples), and invasive squamous cell carcinoma (SCC; 25 samples). The results were compared with the expression levels of Ki-67, cdk2, and cyclin E. The functional aspects of the p27 protein, such as its ability to bind to cdk2 and the phosphorylation activity of p27-bound cdk2, also were evaluated with an immunoprecipitation and histone H1 kinase assay. RESULTS: In normal cervical epithelia, the expression of p27 was strong in the intermediate and superficial cells but very weak in the parabasal cells. In CIN samples, the expression of p27 was negligible. The expression of p27 in these tissues showed an inverse topologic correlation to that of Ki-67, cdk2, and cyclin E. However, it is noteworthy that the number of p27 positive cells increased in SCC samples that also showed increased expression of Ki-67, cdk2, and cyclin E. The p27 protein in SCC samples was bound to cdk2 and cyclin E. However, cdk2 that was bound to p27 still possessed histone H1 kinase activity. CONCLUSIONS: The expression of p27 may be involved in the growth regulation of the normal squamous epithelium in the uterine cervix. However, aberrant function of p27 expression may occur in invasive SCC of the cervix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号