首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical analysis has shown the pond snail Lymnaea stagnalis to contain 2 main classes of Phe-Met-Arg-Phe-NH2 (FMRFamide)-like neuropeptides: the tetrapeptides FMRFamide and Phe-Leu-Arg-Phe-NH2 (FLRFamide), and the heptapeptides Gly-Asp-Pro-Phe-Leu-Arg-Phe-NH2 (GDP-FLRFamide) and Ser-Asp-Pro-Phe-Leu-Arg-Phe-NH2 (SDPFFRFamide). By genomic mapping and DNA sequencing, we show here that the GDP/SDPFLRFamide coding region lies 3' to the FMRFamide coding region. The absence of an initiating start methionine and the presence of good-concensus 3' and 5' splice sites suggests that the GDP/SDPFLRFamide coding region makes up 1 exon of a larger gene. In addition to 7 copies of GDPFLRFamide and 6 copies of SDPFLRFamide, the exon encoding the heptapeptides also encodes 3 novel peptides, Glu-Phe-Phe-Pro-Leu-NH2 (EFFPLamide), Ser-Asp-Pro-Tyr-Leu-Phe-Arg-NH2 (SDPYLFRamide), and Ser-Asp-Pro-Phe-Phe-Arg-Phe-NH2 (SDPFFRFamide). In contrast to the tetrapeptide FMRFamide precursor protein, the GDP/SDPFLRFamide peptides are encoded contiguously, being separated only by single basic amino acids.  相似文献   

2.
In the pulmonate snail Lymnaea stagnalis , FMRFamide-like neuropeptides are encoded by a multi-exon genomic locus which is subject to regulation at the level of mRNA splicing. We aim to understand the post-translational processing of one resulting protein precursor encoding the tetrapeptide FMRFamide and a number of other putative peptides, and determine the distribution of the final peptide products in the central nervous system (CNS) and periphery of Lymnaea. We focused on two previously unknown peptide sequences predicted by molecular cloning to be encoded in the tetrapeptide protein precursor consecutively, separated by the tetrabasic cleavage site RKRR. Here we report the isolation and structural characterization of a novel non-FMRFamide-like peptide, the 22 amino acid peptide SEQPDVDDYLRDWLQSEEPLY. The novel peptide is colocalized with FMRFamide in the CNS in a number of identified neuronal systems and their peripheral motor targets, as determined by in situ hybridization and immunocytochemistry. Its detection in heart excitatory motoneurons and in nerve fibres of the heart indicated that the novel peptide may play a role, together with FMRFamide, in heart regulation in the snail. The second predicted peptide, STEAGGQSEEMTHRTA (16 amino acids), was at very low abundance in the CNS and was only occasionally detected. Our current findings, suggestive of a distinct pattern of post-translational processing, allowed the reassessment of a previously proposed hypothesis that the two equivalent sequences in the Aplysia FMRFamide gene constitute a molluscan homologue of vertebrate corticotrophin releasing factor-like peptides.  相似文献   

3.
4.
5.
6.
Henry J  Zatylny C  Favrel P 《Brain research》2000,862(1-2):162-170
The APGWamide-related neuropeptides, predicted by the cDNA of the APGWamide precursor of Mytilus edulis, have been sought by means of HPLC and electrospray mass ionization. The three predicted peptides KPGWamide, RPGWamide and TPGWamide were detected in the three main muscles and surprisingly an ion at m/z 429 corresponding to the gastropod peptide APGWamide was also demonstrated. Similar investigations performed in Lymnaea stagnalis central nervous system (CNS) revealed the occurrence of mussel APGWamide-related peptides (APGWamide-RPs) demonstrating for the first time the presence and the expression of the two precursors in both gastropod and bivalve mollusks. The absence of homologous domain in the Mytilus precursor [P. Favrel, M. Mathieu, Molecular cloning of a cDNA encoding the precursor of Ala-Pro-Gly-Trp-amide related neuropeptides from the bivalve Mytilus edulis. Neurosci. Lett. 1996;205:210-214] and the Lymnaea precursor [A.B. Smit, C.R. Jiménez, R.W. Dirks, R.P. Croll, W.P.M. Geraerts, Characterization of cDNA clone encoding multiple copies of the neuropeptide APGWamide in the molluscs Lymnaea stagnalis. J. Neurosci. 1992;12:1709-1715] eliminates the hypothesis of an alternative splicing of a single gene and suggests the likelihood of two genes probably resulting from duplication of an ancestral gene before the divergence between gastropods and bivalves. The similar potency observed on contraction assay and the differential distribution of the various peptides suggest that they may exert distinct activities on multiple targets.  相似文献   

7.
The cross-sectional area of axon profiles in two classes of interneuron, L1 and L2, in the fly's lamina, exhibits a circadian rhythm of swelling and shrinking; axon caliber also changes after microinjecting putative lamina neurotransmitters. Among these, the neuropeptide pigment-dispersing factor, PDF, is proposed to transmit circadian information from the housefly's (Musca domestica) clock to L1 and L2, increasing axon caliber during the day. Testing whether other neurotransmitters may modulate this effect we have: (1) examined optic lobe cell immunoreactivity to FMRFamide peptides and its co-immunolocalization to PDF in M. domestica and Drosophila melanogaster, and to the product of the circadian clock gene PER in D. melanogaster; and (2) made microinjections of FMRFamide and related neuropeptides into the second neuropil, or medulla. In M. domestica, nine groups of optic lobe cells, several cells in the lateral and dorsal protocerebrum, and in the subesophageal ganglion, together contribute dense FMRFamide immunoreactive arborizations in almost all central brain and optic lobe neuropils. In D. melanogaster a similar pattern of labeling arises from fewer cells. Daytime microinjections show that another neuropeptide, similar to molluscan FMRFamide, shrinks M. domestica's L1 and L2 axons, thus opposing the action of PDF. We discuss evidence for a medulla site of action for a released FMRFamide-like peptide, either from: MeRF2 cells, acting directly on L1 and L2's medulla terminals; or MeRF1 cells, acting indirectly via medulla centrifugal cells C2 and C3.  相似文献   

8.
9.
In order to identify functionally important regions of a neuropeptide gene in Drosophila melanogaster, we have studied its occurrence in related species and have characterized the structure of a homologous gene in Drosophila virilis. The melanogaster gene encodes a precursor that contains 13 neuropeptides related to the molluscan tetrapeptide FMRFamide (Nambu et al., 1988; Schneider and Taghert, 1988). Using the melanogaster gene as a probe in Southern blot analysis, related sequences were detected in DNA from each of 7 species tested. D. virilis, which is estimated to have diverged from D. melanogaster between 60 and 80 million years ago (Throckmorton, 1975), was chosen for more detailed study. Immunocytochemical staining using an antibody to authentic FMRFamide revealed a similar set of immunoreactive neurons in the CNS of larvae from the 2 Drosophila species. Using a melanogaster gene probe, overlapping clones were isolated from a virilis genomic library; DNA sequence analysis indicated the presence of a homologous gene. Comparisons of the genes and deduced proteins between the 2 species revealed the following points. (1) Both genes are divided into 2 exons: in D. melanogaster the exons are 106 and 1352 bp long; in D. virilis, they are 169 and at least 1232 bp long; in both species, the intron is approximately 2.5 kb long. (2) The sequence of exon I has largely diverged, and in neither species are exon I sequences translated. In this vicinity of the gene, sequence conservation is limited to a 67 bp region that spans the TATA box and the RNA start site. (3) The deduced neuropeptide precursors have very similar sizes (347 vs 339 amino acids) and the presumed signal sequences are perfectly conserved. (4) While the melanogaster precursor contains 13 FMRFamide-related peptides, the virilis precursor contains only 10. (5) The sequences of some but not all of the FMRFamide-like peptides are perfectly conserved. (6) In the rest of the precursor, significant sequence conservation is found only in the N-terminal portion; immediately downstream of the final FMRFamide-like peptide, the protein sequences are highly divergent. (7) 5' to the RNA start sites (1.2 kb of melanogaster DNA and 1.8 kb of virilis DNA), 17 small (9-52 base pairs) regions are evolutionarily conserved (greater than 80% sequence conservation). We discuss neuropeptide biosynthesis, the functions and evolution of FMRFamide-like neuropeptides in insects, and the cell-specific regulation of neuropeptide gene expression in the contexts of these results.  相似文献   

10.
The molluscan neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2) inhibits the beat of isolated ventricles of the freshwater clam Lampsilis claibornensis. The decline in frequency and diastolic tone precedes the dose- and time-dependent increase in cAMP also produced by the peptide. Phosphodiesterase inhibitors (theophylline, 3-isobutyl-1-methylxanthine) and cAMP analogs also inhibit Lampsilis hearts, but only at high doses (10(-5)-10(-3)M). Again, the inhibition by theophylline is accompanied by a rise in cAMP. Nevertheless, the delayed increase in cAMP levels following FMRFamide treatment may suggest that cAMP is not mediating the onset of FMRFamide cardioinhibition.  相似文献   

11.
An immunocytochemical method was used for localization of various peptide-like substances in the Ascaris nervous system. Out of 45 antipeptide antisera, 12 demonstrated immunoreactivity in different subsets of neurons; these 12 antisera were raised against luteinizing hormone-releasing hormone (LHRH), Aplysia peptide L11 (L11), Aplysia peptide 12B (12B), small cardioactive peptide B (SCPB), neuropeptide Y (NPY), FMRFamide, gastrin-17, cholecystokinin octapeptide (CCK-8), alpha-melanocyte stimulating hormone (alpha MSH), calcitonin gene related peptide (CGRP), corticotropin releasing factor (CRF), and vasoactive intestinal peptide (VIP). Several peptide-like substances were colocalized to the same neuron. Our results suggest that Ascaris, like other organisms, contains multiple peptidergic systems.  相似文献   

12.
Male mating behavior of the simultaneous hermaphrodite freshwater snail Lymnaea stagnalis is controlled by a neuronal network that consists of various types of peptidergic neurons, as well as serotonergic cells. In the present article, we describe the isolation and characterization of a cDNA clone that encodes a multipeptide preprohormone expressed in the anterior lobe of the right cerebral ganglion, in a group of neurons that principally innervate the penial complex. The preprohormone is 219 amino acids in length and contains 10 copies of the peptide Ala-Pro-Gly-Trp-Gly. Posttranslational processing of the prohormone may lead to the generation of the amidated neuropeptide Ala-Pro-Gly-Trp-amide (APGWamide), an amidated C-terminal anterior lobe peptide, and four connecting peptide sequences, C1-C4. We show by in situ and filter hybridizations that neurons of the right anterior lobe comprise the major site of expression of the APGWamide gene. Expression of the APGWamide gene is detected in the CNS of both adult animals and noncopulating juveniles. Peptides derived from the APGWamide prohormone are probably involved in the control of a part of the male mating behavior and have both central and peripheral targets.  相似文献   

13.
In Lymnaea stagnalis, three members of the FMRFamide peptide family have been chemically identified in the central nervous system, and other members of the family are predicted by cDNA studies. The present study demonstrates the occurrence of even more FMRFamide-related peptides in this species by identifying a novel member of this family. The peptide was purified from brain extracts by three different HPLC steps. Its amino acid sequence has been determined as Ser-Lys-Pro-Tyr-Met-Arg-Phe-amide (SKPYMRFamide).  相似文献   

14.
G Telegdy  I Bollók 《Neuropeptides》1987,10(2):157-163
The effects of FMRFamide on passive avoidance behaviour and electroshock-induced amnesia following intracerebroventricular administration were studied in rats. FMRFamide given immediately after the learning trial, or 20 min before the retention trial, attenuated the avoidance response, thereby impairing the consolidation and retrieval processes. Electroshock induced amnesia when applied immediately after the learning trial. Treatment with FMRFamide facilitated the amnesia of the passive avoidance response. The results indicate that FMRFamide peptide belongs in the class of neuropeptide which are amnesic.  相似文献   

15.
Intracerebroventricular (i.c.v.) administration of either Phe-Met-Arg-Phe-NH2 (FMRFamide; molluscan cardioexcitatory neuropeptide; 3-30 micrograms) or the FMRFamide analog Phe-D-Met-Arg-Phe-NH2 ([D-Met2]FMRFamide; 15 micrograms) to conscious unrestrained spontaneously hypertensive rats (SHR) produced a relatively long lasting (greater than 1 h) increase in heart rate. The increase in heart rate produced by [D-Met2]FMRFamide was attenuated by i.c.v. injection of the opiate antagonist naloxone (2 micrograms). These results extend to a second endpoint an apparent opioid agonist-like (naloxone-reversible) action of [D-Met2]FMRFamide.  相似文献   

16.
17.
The ability of the molluscan neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) to inhibit the binding of opioid-receptor radioligands to mammalian neural tissue was examined. Rabbit brain membrane preparations were exposed to tritiated dihydromorphine and ethylketocyclazocine in the presence of various concentrations of FMRFamide. FMRFamide inhibited the specific binding of both ligands in a dose-related manner, suggesting that the neuropeptide can inhibit binding to at least two subtypes of opioid receptors (mu and kappa). These data are consistent with the recent proposal that FMRFamide, or the immunoreactive FMRFamide-like material in mammalian brain, spinal cord, and gastrointestinal tract, can act as an endogenous opioid antagonist. However, the low binding affinity of FMRFamide might suggest an alternative mechanism for FMRFamide antagonism of opioid action in vivo.  相似文献   

18.
The neuropeptide Y (NPY) system consists in mammals of three peptides and 4-5 G-protein-coupled receptors called Y receptors that are involved in a variety of physiological functions such as appetite regulation, circadian rhythm and anxiety. Both the receptor family and the peptide family display unexpected evolutionary complexity and flexibility as shown by information from different classes of vertebrates. The vertebrate ancestor most likely had a single peptide gene and three Y receptor genes, the progenitors of the Y1, Y2 and Y5 subfamilies. The receptor genes were probably located in the same chromosomal segment. Additional gene copies arose through the chromosome quadruplication that took place before the emergence of jawed vertebrates (gnathostomes) whereupon differential losses of the gene copies ensued. The inferred ancestral gnathostome gene repertoire most likely consisted of two peptide genes, NPY and PYY, and no less than seven Y receptor genes: four Y1-like (Y1, Y4/a, Y6, and Yb), two Y2-like (Y2 and Y7), and a single Y5 gene. Whereas additional peptide genes have arisen in various lineages, the most common trend among the Y receptor genes has been further losses. Mammals have lost Yb and Y7 (the latter still exists in frogs) and Y6 is a pseudogene in several mammalian species but appears to be still functional in some. One challenge is to find out if mammals have been deprived of any functions through these gene losses. Teleost fishes like zebrafish and pufferfish, on the other hand, have lost the two major appetite-stimulating receptors Y1 and Y5. Nevertheless, teleost fishes seem to respond to NPY with increased feeding why some other subtype probably mediates this effect. Another challenge is to deduce how Y2 and Y4 came to evolve an inhibitory effect on appetite. Changes in anatomical distribution of receptor expression may have played an important part in such functional switching along with changes in receptor structures and ligand preferences.  相似文献   

19.
Numerous peptides are structurally related to the cardioexcitatory tetrapeptide FMRFamide. One subgroup of FMRFamide-related peptides (FaRPs) contains an FMRFamide C terminus. Searches of the Drosophila melanogaster genome database identified the first invertebrate FMRFamide G-protein coupled receptor (GPCR), DrmFMRFa-R (Cazzamali and Grimmelikhuijzen, Meeusen et al., 2002). In order to explore molecular mechanisms involved in FMRFamide signal transduction we identified a receptor from the malaria mosquito Anopheles gambiae genome (Holt et al., 2002), AngFMRFa-R, and compared its structure to DrmFMRFa-R. The cytoplasmic loops, extracellular loops, and transmembrane regions are highly conserved between these two FMRFamide receptors. Another subgroup of FaRPs is the sulfakinins which are represented by the consensus structure -XDYGHMRFamide, where X is D or E (Nichols, 2003). We compared AngFMRFa-R and DrmFMRFa-R to the A. gambiae sulfakinin receptors, ASK-R1 and ASK-R2 ( Duttlinger et al., 2003), and the D. melanogaster sulfakinin receptors, DSK-R1 and DSK-R2 Brody and Cravchik, 2000; Hewes and Taghert, 2001 ). The cytoplasmic loops, extracellular loops, and the transmembrane regions are not highly conserved between the FMRFamide and sulfakinin receptors. In order to explore the role of FMRFamide in mosquito biology we measured the effect of the tetrapeptide on in vivo heart rate. The tetrapeptide increased the frequency of spontaneous contractions of the larval mosquito heart and, thus, increased heart rate. These data support the conclusion that the structure of the FMRFamide receptor and activity of the cardioexcitatory FMRFamide neuropeptide are conserved in mosquito.  相似文献   

20.
Recently gonadotropin-releasing hormone (GnRF)-like and molluscan cardioexcitatory peptide (FMRFamide)-like compounds have been colocalized immunocytochemically to the terminal nerve, a presumed olfactoretinal efferent system in goldfish. In the present study these and related neuropeptides were shown to affect ganglion cell activity, recorded extracellularly, when applied to the isolated superfused goldfish retina. GnRF was usually excitatory. Salmon GnRF (sGnRF) was 10-30x more potent than chicken or mammalian GnRF. FMRFamide and enkephalin also were often excitatory but caused more varied responses than sGnRF. Met5-enkephalin-Arg6-Phe7-NH2 (YGGFMRFamide), which contains both enkephalin and FMRFamide sequences, tended to act like both of these peptides but with mainly enkephalin-like properties. Neuropeptide Y and the C-terminal hexapeptide of pancreatic polypeptides, whose C-terminus (-Arg-Tyr-NH2) is closely related to that of FMRFamide (-Arg-Phe-NH2), gave no consistent responses. Threshold doses were equivalent to: 0.1 microM for sGnRF; 0.5 microM for YGGFMRFamide; 1.5 microM for FMRFamide and enkephalin. Rapid, complete and irreversible desensitization was induced by single, 10-20x threshold doses of sGnRF; but desensitization was infrequent and limited with the other peptides. In general, all peptides tested affected the spatially and chromatically antagonistic receptive field components similarly, but selective actions were seen in a few cases with FMRFamide and with the opioid antagonist, naloxone. Responses, especially to sGnRF and FMRFamide, tended to be most frequently obtained and pronounced in winter and spring, suggesting a correlation with seasonally regulated sexual and reproductive activity. Our observations provide further evidence for transmitter-like roles of neuropeptides related to sGnRF and FMRFamide in the teleostean terminal nerve. The actions of agonists and antagonists, singly and in combination, imply strongly that there are distinctive postsynaptic receptors and/or neural pathways for GnRF-, FMRFamide- and enkephalin-like peptides in the goldfish retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号