首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective and design

The pathophysiology of ischemia/reperfusion (I/R) injury is dominated by an inflammatory response. In the identification of new therapeutic agents, the role of individual cytokines may be essential. Interleukin (IL)-9 is a pleiotropic cytokine recently identified to be involved in various immune responses. In this study, the role of IL-9 in renal I/R injury was assessed.

Methods

We performed repeated direct measurements of arteriovenous IL-9 concentration differences over the reperfused graft in human kidney transplantation.

Results

Substantial renal IL-9 release was observed from deceased donor kidneys (P = 0.006). In contrast, living donor kidneys, which have a more favourable clinical outcome, did not release IL-9 during early reperfusion (P = 0.78). Tissue expression of IL-9 did not change upon reperfusion in both living and deceased human donor kidneys. To assess the role of IL-9 in I/R injury, an experimental study comprising IL-9 inhibition in mice undergoing renal I/R was performed. Although there was no difference in kidney function, structural damage was significantly aggravated in anti-IL-9 treated mice.

Conclusions

Deceased donor grafts show a substantial IL-9 release upon reperfusion in clinical kidney transplantation. However, inhibition of IL-9 aggravated kidney damage, suggesting a regulating or minor role of IL-9 in clinical I/R injury.  相似文献   

2.

Introduction

Previous studies show that cyclophilin A (CypA) acts as a strong chemotactic cytokine to neutrophils, eosinophils, and monocytes in rheumatoid arthritis (RA).

Methods

In this study, monocytes were stimulated by purified CypA and the production of matrix metalloproteinase (MMPs), the cell invasion and the release of inflammatory cytokines were detected respectively by gelatin zymography, invasion assay, and cytometric bead array FCM.

Results

The elevated level of inflammatory cytokine IL-8 was also detected. Results showed that CypA significantly promoted the invasion of THP-1 cells and increased the production of MMP-2 and MMP-9, which displayed a biphasic concentration dependency. In vivo experiments found that the cartilage erosion scores in CypA injection group were significantly higher than those in control group (P?<?0.05).

Conclusion

Our findings suggest that CypA significantly enhances the secretion of MMP-2 and MMP-9, the cell invasion, and the inflammatory cytokines production of monocytes. Our findings may shed some new light on the inflammatory process and the degradation of cartilage and bone in RA.  相似文献   

3.
Matrix metalloproteinase-9 (MMP-9) may play an important role in the development of inflammatory bowel disease (IBD). However, the cellular source of MMP-9 in the inflamed mucosa of IBD remains unclear. Here we report that MMP-9 mRNA is expressed in CaCO-2 cells, an intestinal epithelial cell line, and that its expression is upregulated by inflammatory stimuli. Stimulation of CaCO-2 cells with interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha) led to a dose-dependent increase in expression and secretion of MMP-9. In contrast, bacterial lipopolysaccharide (LPS) failed to induce expression or secretion of MMP-9, suggesting that an inflammatory reaction leading to cytokine release is a necessary step for the induction of MMP-9 release in intestinal epithelial cells. Additional studies show that induction of MMP-9 mRNA peaked at 16 h of IL-1beta stimulation, whereas expression of monocyte chemoattractant protein-1 (MCP-1) and IL-8 both peaked at 3 h of stimulation. Treatment of CaCO-2 cells with rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, significantly reduced secretion of MMP-9, indicating that agents that activate PPAR-gamma may have therapeutic use in patients with IBD.  相似文献   

4.

Objective and design

Interleukin (IL)-22 is important for mucosal host defense. Whereas previous studies focus on lymphocytes as sources of IL-22, we determined whether IL-22 is produced by inflammatory cells in the lungs other than T-lymphocytes during the activation of the innate immune response.

Material, methods and treatment

Inflammatory cells in the lungs of Balb/c mice were primed by endotoxin (LPS, 10 μg) or peptidoglycan (PG, 40 μg) intranasally (3 days). After CD3 + cell depletion, lung homogenates were re-stimulated 24 h with LPS (100 ng/ml), PG (10 μg/ml), IL-23 (100 ng/ml) or vehicle. Human BAL macrophages were stimulated 24 h with PG (50 μg/ml) and IL-23 (100 ng/ml) or vehicle. The release of IL-22 was measured with ELISA and intracellular IL-22 with immunostaining. For statistics, either Dunnett or Students t test method was employed (n = 3–8).

Results

Re-stimulation in vitro increased concentrations of mouse IL-22 protein irrespective of priming in vivo. A majority of macrophages in mouse lung and BAL samples displayed immunostaining for IL-22. In analogy, human BAL macrophages released IL-22 protein, and a third of these cells displayed immunostaining for IL-22.

Conclusions

Alveolar macrophages can produce and release IL-22 during the activation of the innate immune response and thereby constitute a potentially important regulator of mucosal host defence in the lungs.  相似文献   

5.
6.

Purpose

To evaluate the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine response by peripheral blood mononuclear cells (PBMCs) from XLA patients.

Methods

Thirteen patients with XLA were included in the study. LPS-induced TNF-α, IL-1β, IL-6, and IL-10 production was determined in PBMCs from patients and matched healthy controls by ELISA. Cytokine production was correlated with the severity of mutation, affected domain and clinical characteristics.

Results

In response to LPS, PBMCs from XLA patients produced significantly higher amounts of pro-inflammatory cytokines and IL-10 compared to controls, and this production was influenced neither by the severity of the mutation nor the affected domain. PBMCs from patients with a history of more hospital admissions before their diagnosis produced higher levels of TNF-α. PBMCs from patients with lower serum IgA levels showed a higher production of TNF-α and IL-1β. Less severe (punctual) mutations in the Btk gene were associated with higher serum IgG levels at diagnosis.

Conclusions

Our results demonstrate a predominantly inflammatory response in XLA patients after LPS stimulation and suggest a deregulation of TLR signaling in the absence of Btk. This response may be influenced by environmental factors.  相似文献   

7.
8.

Background

Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain.

Methods

We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for in vitro experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test.

Results

NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. In vitro, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1??- and TNF-??-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-??-induced MMP-9 expression through ??1 integrin engagement. In vivo, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia.

Conclusions

This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.  相似文献   

9.

Background

Accumulating evidence indicates that cells expressing Toll-like receptors (TLRs) play an important role in allergic diseases. The authors undertook this study to explore the hypothesis that TLR-mediated inflammatory signals are important from the perspective of asthma management.

Methods

The expressions of TLR1, TLR2, TLR3, TLR4, TLR6, and TLR9 and levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, and IFN-γ) on the peripheral blood mononuclear cells (PBMCs) of 36 stable asthmatics on treatment (the on-treatment group), 15 asthmatics (the treatment-naïve group) before and after a 7-day course of oral prednisolone (30 mg/day), and on the PBMCs of 15 healthy controls were measured after in vitro stimulation using TLR-specific ligands.

Results

In the on-treatment group, TLR1, TLR2, TLR6, and TLR9 expressions on PBMCs were significantly different between asthmatics and controls. And the expression of TLR4 on PBMCs and TNF-α production stimulated by lipopolysaccharide (LPS), were significantly higher in mild to moderate than in severe asthmatics. Interestingly, in the treatment-naïve group, short-term prednisolone significantly increased LPS-induced TNF-α and IFN-γ productions by PBMCs.

Conclusion

TLR-mediated inflammatory signals contribute to the development and severity of asthma and are not reduced by glucocorticoid treatment, which suggests that a TLR-specific antagonist and glucocorticoid are required for the effective control of airway inflammation in asthmatics.  相似文献   

10.

Purpose

The interaction of Shiga toxin (Stx) and/or lipopolysaccharide (LPS) with monocytes (Mo) may be central to the pathogenesis of hemolytic uremic syndrome (HUS), providing the cytokines necessary to sensitize endothelial cells to Stx action. We have previously demonstrated phenotypical alterations in Mo from HUS patients, including increased number of CD16+ Mo. Our aim was to investigate cytokine production in Mo from HUS patients.

Methods

We evaluated TNF-α and IL-10 intracellular contents and secretion in the different Mo subsets in mild (HUS 1) and moderate/severe (HUS 2?+?3) patients. As controls, we studied healthy (HC) and infected children (IC). We also studied Mo responsive capacity towards LPS, measuring the modulation of Mo surface molecules and cytokine production.

Results

In basal conditions, the intracellular measurement of TNF-α and IL-10 revealed that the highest number of cytokine-producing Mo was found in HUS 2?+?3 and IC, whereas LPS caused a similar increase in TNF-α and IL-10-producing Mo for all groups. However, when evaluating the release of TNF-α and IL-10, we found a diminished secretion capacity in the entire HUS group and IC compared to HC in basal and LPS conditions. Similarly, a lower Mo response to LPS in HUS 2?+?3 and IC groups was observed when surface markers were studied.

Conclusion

These results indicate that Mo from severe cases of HUS, similar to IC but different to mild HUS cases, present functional changes in Mo subpopulations and abnormal responses to LPS.  相似文献   

11.

Objective

In vitro 3T3-L1 mouse cells represent a reliable model to investigate the inflammatory phenotype of adipocytes activated by bacteria-derived lipopolysaccharide (LPS). In this study we have evaluated the differential expression of adipokines in response to increasing doses of LPS and various incubation times.

Methods

3T3-L1 mouse adipocytes were treated with E. coli LPS (from 0 to 10 μg/ml) for a time course ranging from 4 to 24 h, 4 h each. A time point at 2 h was also included to highlight early activation by LPS. mRNA expression by RT-PCR on cell lysates and ELISA assays on cell culture supernatants were performed.

Results

Cells activated by increasing doses of LPS upregulated TNF-α expression in the first 2 h, but this expression slowed down within 6–8 h, while IL-6 expression was increasing. This reduction was also observed for CXCL12/SDF1α. Unlike IL-10, IL-6 expression was constantly upregulated by prolonging incubation with LPS. TNF-α and CXCL12 gene expression occurred early in the time-course and exhibited a second increase following the first 4–6 h of incubation with LPS. Optimal expression of most adipokines needed 6–8 h of a prolonged treatment with LPS at 37 °C. The chemokines MIP-1α/CCL3 and MIP-1β/CCL4 were maximally expressed within the first 8 h, then significantly reduced in the following times. IL-10 expression was upregulated by low doses of LPS and downregulated by prolonging time with the bacterial endotoxin. ELISA analysis of released products generally confirmed the result from gene expression experiments.

Conclusion

These data, while assessing previously reported results, highlighted new evidence about the time-dependency in LPS-mediated adipokine production, thus contributing to the comprehension of the inflammatory response of adipocyte.  相似文献   

12.

Objective

Endotoxin tolerance refers to a low response to lipopolysaccharide (LPS). We hypothesized that growth factor independence 1 (Gfi1) involves in the endotoxin tolerance in macrophages.

Methods

Endotoxin tolerance was induced in the RAW264.7 cell line and thioglycolate-elicited murine peritoneal macrophages by incubation with 100 ng/ml LPS for 20 h. Macrophages without the pretreatment were set as control. Both endotoxin tolerant and control cells were then stimulated with 1,000 ng/ml LPS for indicated period of incubation. Gfi1 mRNA expression and protein production were investigated by real-time PCR and Western blotting, respectively. ELISA was performed to quantify the secretion of TNF-α and IL-6.

Result

Compared with non-endotoxin tolerant macrophages, endotoxin tolerant cells secreted a lower amount of TNF-α and IL-6. The mRNA expression of Gfi1 in endotoxin tolerant macrophages was higher than that of control in both RAW264.7 cells and thioglycolate-elicited murine peritoneal macrophages. The protein production was accordingly up-regulated in endotoxin tolerant RAW264.7 cells.

Conclusion

In in vitro endotoxin tolerant macrophages, the expression of Gfi1 mRNA and protein were up-regulated after high dose LPS stimulation, accompanied with a blunted TNF-α and IL-6 secretion. Gfi1 might participate in the mechanism of endotoxin tolerance.  相似文献   

13.

Objective and design

This study was aimed at investigating the effect of chlorogenic acid (CGA) on lipopolysaccharide (LPS)-induced proinflammatory signaling in hepatic stellate cells (HSCs).

Methods

An immortalized rat HSC line was cultured in vitro and treated with LPS in the absence or presence of CGA. Reactive oxygen species (ROS) production in the HSCs was monitored by flow cytometer using DCFH-DA. The protein expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor-κB (NF-κB), and p-IκB-α were determined by Western blot. The mRNA expression levels of TLR4, MyD88, monocyte chemotactic protein 1(MCP-1), and interleukin 6 (IL-6) were detected by RT-PCR. The levels of MCP-1 and IL-6 in the culture supernatant of HSCs were measured by ELISA.

Results

CGA had no effect on expression of TLR4 and MyD88. However, the treatment of CGA can inhibit LPS-induced production of ROS in HSCs. Meanwhile, CGA can inhibit LPS-induced nuclear translocation of NF-κB and IκB-α phosphorylation in HSCs, as well as NAC (a ROS scavenger). The mRNA expression and the levels of MCP-1 and IL-6 in the culture supernatant of the HSCs in this study were elevated by LPS stimulation and inhibited by CGA treatment, as well as NAC and PDTC (a NF-κB inhibitor).

Conclusion

Our results indicate that CGA can efficiently inhibit LPS-induced proinflammatory responses in HSCs and the anti-inflammatory effect may be due to the inhibition of LPS/ROS/NF-κB signaling pathway.  相似文献   

14.

Objective and design

This study investigated the link between growth arrest and DNA damage 45γ (GADD45γ) expression and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) synthesis.

Methods

We stimulated THP-1 monocyte cells using lipopolysaccharide (LPS). We knocked-down and over-expressed GADD45γ using lentiviral vectors harboring GADD45γ short hairpin RNA and GADD45γ open reading frame, respectively. To inhibit activation of c-Jun-terminal kinase (JNK), we used a specific inhibitor, SP600125.

Results

LPS stimulation of THP-1 cells resulted in increased expression of GADD45γ mRNA which reached its peak 2?h after stimulation and gradually diminished thereafter. TNF-α and IL-6 were up-regulated at both the mRNA and protein levels in activated THP-1 cells. Knock-down of GADD45γ reduced TNF-α protein production by up to 75?% and IL-6 protein by up to 60?%. In contrast, over-expression of GADD45γ increased TNF-α production by six-fold and IL-6 protein by 80-fold. There was a discrepancy between TNF-α mRNA and its protein level, whereas IL-6 mRNA and its protein level were correlated. Knock-down of GADD45γ decreased the JNK activity, suggesting that JNK may play the role of a downstream mediator for the pro-inflammatory effects of GADD45γ.

Conclusions

We show evidence that GADD45γ may regulate TNF-α and IL-6 expression in activated THP-1 monocyte cells.  相似文献   

15.
16.

Background

Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP.

Methods

(1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG.

Results

In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP-10, IL-8, IL-1α and IL-6. The effects of GLGPG were weaker than those of RHP, which presumably contains other chondro-protective substances besides GLGPG.

Conclusions

RHP and GLGPG attenuate inflammatory responses in different cellular systems (macrophages, PBLs and chondrocytes). The effects on cytokine production and MMP expression indicate that RHP and its constituent GLGPG down-regulate catabolic processes associated with osteoarthritis (OA) or rheumatoid arthritis (RA). These data provide a molecular and biochemical basis for cartilage protection provided by RHP.  相似文献   

17.

Objective

Patients with hypomorphic mutations in Nuclear Factor-κB Essential Modulator (NEMO) are immunodeficient (ID) and most display ectodermal dysplasia and anhidrosis (EDA). We compared cytokine production by NEMO-ID patients with and without EDA.

Methods

PBMCs of NEMO-ID patients, four with EDA carrying E315A, C417R, D311N and Q403X, and three without EDA carrying E315A, E311_L333del and R254G, were cultured with PHA, PHA plus IL-12p70, LPS, LPS plus IFN-γ, TNF and IL-1β. The production of various cytokines was measured in the supernatants. Fifty-nine healthy individuals served as controls.

Results

PBMCs of NEMO-ID patients without EDA produce subnormal amounts of IFN-γ after stimulation with PHA, but normal amounts of IFN-γ after PHA plus IL-12p70. In contrast, IFN-γ production by patients with EDA was low in both cases. Patients with EDA also generate lower PHA-stimulated IL-10 and IL-1β than controls, whereas the production of these cytokines by patients without EDA was normal.

Conclusion

Responses of PBMCs in NEMO-ID patients with EDA to PHA with and without IL-12p70 appear less robust than in NEMO-ID patients without EDA. This possibly indicates a better preserved NEMO function in our patients without EDA.  相似文献   

18.

Objective

Periodontal disease is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss in severe clinical cases. Interleukin (IL)-6, IL-8, and the chemical mediator prostaglandin E2 (PGE2) are known to play important roles in inflammatory responses and tissue degradation. Recently, we reported that the protein kinase A (PKA) inhibitor H-89 suppresses lipopolysaccharide (LPS)-induced IL-8 production by human gingival fibroblasts (HGFs). In the present study, the relevance of the PKA activity and two PKA-activating drugs, aminophylline and adrenaline, to LPS-induced inflammatory cytokines (IL-6 and IL-8) and PGE2 by HGFs were examined.

Methods

HGFs were treated with LPS from Porphyromonas gingivalis and H-89, the cAMP analog dibutyryl cyclic AMP (dbcAMP), aminophylline, or adrenaline. After 24 h, IL-6, IL-8, and PGE2 levels were evaluated by ELISA.

Results

H-89 did not affect LPS-induced IL-6 production, but suppressed IL-8 and PGE2 production. In contrast, dbcAMP significantly increased LPS-induced IL-6, IL-8, and PGE2 production. Up to 10 ??g/ml of aminophylline did not affect LPS-induced IL-6, IL-8, or PGE2 production, but they were significantly increased at 100 ??g/ml. Similarly, 0.01 ??g/ml of adrenaline did not affect LPS-induced IL-6, IL-8, or PGE2 production, but they were significantly increased at concentrations of 0.1 and 1 ??g/ml. In the absence of LPS, H-89, dbcAMP, aminophylline, and adrenaline had no relevance to IL-6, IL-8, or PGE2 production.

Conclusion

These results suggest that the PKA pathway, and also PKA-activating drugs, enhance LPS-induced IL-6, IL-8, and PGE2 production by HGFs. However, aminophylline may not have an effect on the production of these molecules at concentrations used in clinical settings (8 to 20 ??g/ml in serum). These results suggest that aminophylline does not affect inflammatory responses in periodontal disease.  相似文献   

19.

Objective

Interleukin-1β-mediated production of matrix metalloproteinases (MMPs) plays a pivotal role in the process of osteoarthritis. Crocin, a pharmacologically active component of Crocus sativus L. (saffron), has been used in Chinese traditional medicine. In this study, we aimed to investigate the effects of crocin on MMP-1, MMP-3 and MMP-13 expression in rabbit chondrocytes induced by interleukin-1β (IL-1β) and in an experimental rabbit model induced by anterior cruciate ligament transection.

Methods

Chondrocytes isolated from the articular cartilage of 4-week-old rabbits were cultured and passaged. Confluent chondrocytes were treated with various concentrations of crocin in the presence or absence of IL-1β (10 ng/ml) for 24 h. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting were used to investigate the expression of inducible MMP-1, MMP-3 and MMP-13. In addition, the in-vivo effects of crocin were assessed by morphological and histological analysis.

Results

IL-1β markedly upregulated the expression of MMP-1, -3 and -13 in chondrocytes, and this activation was inhibited by co-incubation with crocin in a dose-dependent manner, in contrast with the control group. Moreover, crocin inhibited IL-1β-induced activation of the nuclear factor kappa B pathway through suppressing degradation of inhibitory-kappa-B-α. In-vivo investigations showed that crocin ameliorated cartilage degeneration and that expression of the MMP-1, -3 and -13 genes in cartilage was significantly inhibited by crocin.

Conclusion

Taken together, our findings suggest that the anti-inflammatory activity of crocin may be of potential value in the prevention and treatment of osteoarthritis.  相似文献   

20.

Background

Activation of microglia is involved in a broad range of neuroinflammatory diseases. Suppression of microglial activation may, therefore, contribute to alleviate the progression of neuroinflammatory diseases. It has been reported that propofol has a potent anti-inflammatory property. In the present study, we investigated the effects of posttreatment with propofol on the production of inflammatory molecules in lipopolysaccharide (LPS)-stimulated microglia.

Materials and methods

Microglia were exposed to various concentrations (25, 50, 100, 250 μM) of propofol for 1 h after LPS stimulation for 24 h. The levels of proinflammatory mediators inducible nitric oxide synthase (iNOS)/nitric oxide (NO), cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured.

Results

Propofol at a concentration of 25 μM did not affect the production of proinflammatory mediators, which was enhanced by LPS. At the concentrations of 50, 100, and 250 μM, propofol significantly inhibited LPS-mediated production of NO, PGE2, TNF-α, and IL-1β and the expression of iNOSmRNA, COX-2mRNA, TNF-α mRNA, and IL-1β mRNA.

Conclusions

These results suggest that propofol, at clinically relevant concentrations, can reduce inflammatory responses in LPS-induced inflammation in activated microglia and might be an intravenous anesthetic of choice when patients with neuroinflammatory diseases require sedation and/or general anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号