首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present study investigated the temporal relationship between neuronal nitric oxide synthase (nNOS) activity and expression and the development of neuronal damage occurring during anoxia and anoxia followed by reoxygenation. For this purpose, cerebellar granule cells were exposed to 2 hr of oxygen and glucose deprivation (OGD) and 24 hr of reoxygenation. To clarify the consequences of nNOS activity inhibition on neuronal survival, cerebellar granule cells were exposed to OGD, both in the absence of extracellular Na(+) ([Na(+)](e)), a condition that by reducing intracellular Ca(2+) ([Ca(2+)](I)) prevents Ca(2+)-dependent nNOS activation, and in the presence of selective and nonselective nNOS inhibitors, such as N(omega)-L-allyl-L-arginine (L-ALA), N(omega)-propyl-L-arginine (NPLA), and L-nitro-arginine-methyl-ester (L-NAME), respectively. The results demonstrated that the removal of [Na(+)](e) hampered the [Ca(2+)](i) increase and decreased expression and activity of nNOS. Similarly, the increase of free radical production present in cerebellar neurons, exposed previously to OGD and OGD/reoxygenation, was abolished completely in the absence of [Na(+)](e). Furthermore, the absence of [Na(+)](e) in cerebellar neurons exposed to 2 hr of OGD led to the improvement of mitochondrial activity and neuronal survival, both after the OGD phase and after 24 hr of reoxygenation. Finally, the exposure of cerebellar neurons to L-ALA (200 nM), and L-NAME (500 microM) was able to effectively reduce NO(*) production and caused an increase in mitochondrial oxidative activity and an improvement of neuronal survival not only during OGD, but also during reoxygenation. Similar results during OGD were obtained also with NPLA (5 nM), another selective nNOS inhibitor. These data suggest that the activation of nNOS is highly accountable for the neuronal damage occurring during the OGD and reoxygenation phases.  相似文献   

2.
Catalpol, an iridoid glycoside abundant in the roots of Rehmannia glutinosa, has been previously found to prevent the loss of CA1 hippocampal neurons and to reduce working errors in gerbils after ischemia-reperfusion injury. In the present study, we investigated the effects of catalpol on astrocytes in an ischemic model to further characterize its neuroprotective mechanisms. Primary cultured astrocytes exposed to oxygen-glucose deprivation (OGD) followed by reperfusion (adding back oxygen and glucose, OGD-R), were used as an in vitro ischemic model. Treatment of the astrocytes with catalpol during ischemia-reperfusion increased astrocyte survival significantly in a concentration-dependent manner, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release and morphological observation. In addition, catalpol prevented the decrease in mitochondrial membrane potential, inhibited the formation of reactive oxygen species (ROS) and the production of nitric oxide (NO), decreased the level of lipid peroxide and the activity of inducible nitric oxide synthase (iNOS), and elevated the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and the content of glutathione (GSH). Our results suggest that catalpol exerts the most significant cytoprotective effect on astrocytes by suppressing the production of free radicals and elevating antioxidant capacity.  相似文献   

3.
Estrogen treatment in symptomatic postmenopausal women appears to improve cognitive performance including memory, an effect which may involve enhanced nitric oxide formation in hippocampal neurons. To study whether 17beta-estradiol (E2) affects NO synthase activity in the hippocampus, we investigated the influence of E2 on hippocampal NO synthase expression and activity in female rats. Ovariectomy, which significantly decreased E2 serum levels, reduced neuronal (nNOS) and endothelial NO synthase (eNOS) expression and Ca(2+)-dependent NOS activity. E2 substitution reversed these effects. It is concluded that E2 increases nNOS and eNOS expression and activity in female hippocampus and thus improves hippocampal function.  相似文献   

4.
Glutathione (GSH) is a major non-enzymatic antioxidant which is present in all tissues. Its protective actions occur through different pathways such its role as a substrate of antioxidant enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST). Nitric oxide (NO) is involved in many physiological processes in the central nervous system, including nociception. In spite of much evidence concerning oxidative and nitrosative stress and neuropathic pain, the exact role of these molecules in pain processing is still unknown. Sciatic nerve transection (SNT) was employed to induce neuropathic pain in rats. Glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities, glutathione (GSH) content, GSH/GSSG ratio, nitric oxide metabolites (NOx) and neuronal nitric oxide synthase (nNOS) protein expression in the lumbosacral spinal cord were determined. All of these analyses were performed in the SNT and sham groups 1, 3, 7 and 15 days after surgery. There was an increase in GPx activity and in GSH content 3 days after surgery in both sham and SNT groups, but the GSH/GSSG ratio increased only in the SNT group in this time point. nNOS expression was upregulated 7 days post SNT. NOx was detected 1 day after surgery in sham and SNT groups, but at 7 and 15 days, the increase occurred only in SNT animals. These results support the role of the gluthatione system in pain physiology and highlight the involvement of NO as an important molecule related to nociception.  相似文献   

5.
The effects of glucose and O2 deprivation (OGD) on the survival of cortical and cerebellar neurons were examined to characterize the biochemical mechanisms involved in OGD and OGD followed by reoxygenation. To this aim, neurons were kept for different time periods in a hypoxic chamber with a controlled atmosphere of 95% N(2) and 5% CO2 in a glucose-free medium. After OGD, reoxygenation was achieved by exposing the cells to normal O2 and glucose levels. Neither MTT, an index of mitochondrial oxidative phosphorylation, nor malondialdehyde (MDA) production, a parameter measuring lipid peroxidation, were affected by 1 hr of OGD in cortical neurons. When OGD was followed by 24 hr of reoxygenation, MTT levels were reduced by 40% and MDA was significantly increased, whereas cellular ATP content did not change. Cerebellar granule cells, on the other hand, did not show any reduction of mitochondrial activity after exposure to 1 hr OGD or to 1 hr OGD plus 24 hr of reoxygenation. When OGD was prolonged for 2 hr, a significant reduction of the mitochondrial activity and of cellular ATP content occurred, coupled to a significant MDA increase in cerebellar granule cells, whereas in cortical neurons a reduction of MTT levels after 2 hr OGD was not accompanied by a decrease of cellular ATP content nor by an increase of MDA production. Moreover, 24 hr of reoxygenation further reinforced lipid peroxidation, LDH release, propidium iodide positive neurons and the reduction of ATP content in cerebellar granule cells. The results of the present study collectively show that cortical and cerebellar neurons display different levels of vulnerability to reoxygenation followed by OGD. Furthermore, the impairment of mitochondrial activity and the consequent overproduction of free radicals in neurons were observed for the first time occurring not only during the reoxygenation phase, but already beginning during the OGD phase.  相似文献   

6.
《Brain research bulletin》2010,81(6):422-427
Glutathione (GSH) is a major non-enzymatic antioxidant which is present in all tissues. Its protective actions occur through different pathways such its role as a substrate of antioxidant enzymes, such as glutathione peroxidase (GPx) and glutathione-S-transferase (GST). Nitric oxide (NO) is involved in many physiological processes in the central nervous system, including nociception. In spite of much evidence concerning oxidative and nitrosative stress and neuropathic pain, the exact role of these molecules in pain processing is still unknown. Sciatic nerve transection (SNT) was employed to induce neuropathic pain in rats. Glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities, glutathione (GSH) content, GSH/GSSG ratio, nitric oxide metabolites (NOx) and neuronal nitric oxide synthase (nNOS) protein expression in the lumbosacral spinal cord were determined. All of these analyses were performed in the SNT and sham groups 1, 3, 7 and 15 days after surgery. There was an increase in GPx activity and in GSH content 3 days after surgery in both sham and SNT groups, but the GSH/GSSG ratio increased only in the SNT group in this time point. nNOS expression was upregulated 7 days post SNT. NOx was detected 1 day after surgery in sham and SNT groups, but at 7 and 15 days, the increase occurred only in SNT animals. These results support the role of the gluthatione system in pain physiology and highlight the involvement of NO as an important molecule related to nociception.  相似文献   

7.
Hippocampus is one of the brain regions most vulnerable to unconjugated bilirubin (UCB) encephalopathy, although cerebellum also shows selective yellow staining in kernicterus. We previously demonstrated that UCB induces oxidative stress in cortical neurons, disruption of neuronal network dynamics, either in developing cortical or hippocampal neurons, and that immature cortical neurons are more prone to UCB-induced injury. Here, we studied if immature rat neurons isolated from cortex, cerebellum and hippocampus present distinct features of oxidative stress and cell dysfunction upon UCB exposure. We also explored whether oxidative damage and its regulation contribute to neuronal dysfunction induced by hyperbilirubinemia, considering neurite extension and ramification, as well as cell death. Our results show that UCB induces nitric oxide synthase expression, as well as production of nitrites and cyclic guanosine monophosphate in immature neurons, mainly in those from hippocampus. After exposure to UCB, hippocampal neurons presented the highest content of reactive oxygen species, disruption of glutathione redox status and cell death, when compared to neurons from cortex or cerebellum. In particular, the results indicate that cells exposed to UCB undertake an adaptive response that involves DJ-1, a multifunctional neuroprotective protein implicated in the maintenance of cellular oxidation status. However, longer neuronal exposure to UCB caused down-regulation of DJ-1 expression, especially in hippocampal neurons. In addition, a greater impairment in neurite outgrowth and branching following UCB treatment was also noticed in immature neurons from hippocampus. Interestingly, pre-incubation with N-acetylcysteine, a precursor of glutathione synthesis, protected neurons from UCB-induced oxidative stress and necrotic cell death, preventing DJ-1 down-regulation and neuritic impairment. Taken together, these data point to oxidative injury and disruption of neuritic network as hallmarks in hippocampal susceptibility to UCB. Most importantly, they also suggest that local differences in glutathione content may account to the different susceptibility between brain regions exposed to UCB.  相似文献   

8.
9.
Increased hemichannel opening induced by oxygen glucose deprivation (OGD) was reported in the hippocampal pyramidal neuron. It was suggested that the pannexin1 hemichannel opening could mediate ionic flux dysregulation, anoxic depolarization, and energy-depleting efflux of glucose and ATP for ischemic neurons. However, the regulatory mechanisms of pannexin1 hemichannel opening have been poorly understood. Here we showed that excessive generation of nitric oxide (NO) during ischemia could induce the calcein leakage from neurons, which was markedly reduced by NO synthase inhibitor. The calcein leakage from neurons during OGD was also attenuated by the application of N-ethylmaleimide (NEM), an SH-alkylating agent, and dithiothreitol (DTT), a reducer of oxidized sulfhydryl groups. However, the soluble guanylyl cyclase (sGC) inhibitor had a minor effect on the calcein leakage during OGD. Furthermore, the elevated intracellular but not extracellular levels of glutathione could also inhibit the calcein leakage during OGD. Similar results were observed in metabolic inhibition (MI), which is another ischemic-like condition. Finally, immunocytochemical and immunoblotting analysis revealed that, after 1 hr of OGD stimulation, the distribution and expression of pannexin1 showed no significant difference compared with control. However, the pannexin1 mRNA expression was elevated after 1 hr of OGD and a sustained increase was maintained during reperfusion. These results implied that the reactive oxygen species (ROS), especially NO, might be involved in the enhanced pannexin1 hemichannel opening and that the S-nitrosylation but not the NO/cGMP pathway played a more important role in this event.  相似文献   

10.
目的研究依达拉奉对脑缺血再灌注大鼠海马一氧化氮(NO)产生的影响。方法大鼠脑缺血采用四血管阻断法,选择性测定电极检测的浓度。实验分为生理盐水组、依达拉奉组(Edaravone)和7-Nitroindazole(7-NI)组。结果依达拉奉和7-NI皆未影响大鼠的血压和海马血流量,均显著减少了缺血再灌注时海马内NO的产生(均P<0.001)。结论依达拉奉可能通过抑制神经型一氧化氮合酶(nNOS)或减少NO而起到神经保护作用。  相似文献   

11.
The effect of hypoxia-ischemia on the nitric oxide synthase (NOS) cofactor tetrahydrobiopterin (BH4) and changes in the enzyme dimer state have not previously been studied. Cell-based studies have demonstrated the regulation of nitric oxide (NO) synthesis by intracellular BH4 levels. Activation of NOS requires two NOS polypeptides to form a homodimer. Dimerization results in the creation of high-affinity binding sites for BH4 and L-arginine. Our previous studies have indicated that nNOS activity falls 2 h post-hypoxia-ischemia in the immature rodent model. Thus, the objective of this study was to determine whether changes in nNOS dimeric state could be responsible for the decrease in nNOS activity. Using the immature rat model of HI in conjunction with LT-PAGE and Western blot analysis, we determined the effect of HI on NOS dimer state in hippocampus and cortex and the effects of pharmacologic modulation of NO levels during HI on dimer formation. Using high-performance liquid chromatography (HPLC) and electrospray tandem mass spectrometry (MS-MS), we measured BH4 and L-arginine levels respectively after HI under the same conditions. We found minimal or no changes in either BH4 levels or NOS dimer state at 2 h, 24 h and 7 day recovery from HI on postnatal day 7. In contrast, L-arginine levels were transiently increased in the hypoxic ischemic hemisphere. Thus, our data suggest that the previously described decrease in NOS activity after HI is not associated with depletion of the cofactor BH4, L-arginine substrate or changes in the NOS enzyme dimer state.  相似文献   

12.
目的探讨磷酸二酯酶抑制剂西洛他唑对糖氧剥离后大鼠皮层细胞培养的影响及作用机制。方法原代混合培养大鼠皮层细胞,建立糖氧剥离的细胞损伤模型模拟细胞"缺血损伤",然后进行干预。测定细胞培养上清中乳酸脱氢酶(LDH)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、神经元型一氧化氮合酶(nNOS)及诱导型一氧化氮合酶(i NOS)的含量;测定一氧化氮(NO)的分泌水平;测定细胞内环磷酸腺苷(cAMP)水平及四唑盐(MTT)比色试验测定细胞活力。结果西洛他唑组及依达拉奉组与糖氧剥离模型组比较,LDH、MDA漏出量显著减少(P均0.05),GSH-Px释放量明显升高(P均0.05),nNOS、i NOS的水平及NO的分泌量显著下降(P均0.05),细胞内cAMP水平明显升高(P均0.05);细胞存活率显著提高(P均0.05);西洛他唑与依达拉奉组比较,LDH、MDA漏出量及GSH-Px的释放量无差别,nNOS、i NOS和NO的水平明显降低(P均0.05),细胞内cAMP水平显著升高(P0.05);细胞存活率明显提高(P0.05)。结论西洛他唑对培养大鼠皮层细胞在糖氧剥离损伤中具有保护作用,其作用机制可能通过抗氧化、降低nNOS及i NOS的水平从而降低NO的分泌、升高细胞内cAMP水平来实现的。  相似文献   

13.
Work on acute models of cortical injury has revealed a population of small GABAergic interneurons that are induced to increase their low constitutive expression of neuronal nitric oxide (NO) synthase (nNOS). In some cases, this activation may play a role in NO-mediated degeneration of pyramidal neurons. In this report, we explore the anatomy of various classes of cortical nNOS (+) (nitrergic) neurons, with emphasis on small interneurons, in the medial temporal lobe of subjects with Alzheimer’s disease (AD) from two well-characterized cohorts, the Baltimore Longitudinal Study on Aging (BLSA) and the Religious Order Study (ROS). We find that small calbindin (+) cortical interneurons are induced to high levels of NADPHd/nNOS reactivity early in AD and abound in areas with emerging neurofibrillary pathology, that is, in entorhinal cortex in the beginning of the limbic stage of Braak, in hippocampal CA1 in the mature limbic stage and in temporal neocortex in the late limbic stage. This pattern was robust and significant in the younger of the two AD cohorts studied (BLSA), but persisted as a trend in the older cohort (ROS). In optimally prepared material, we find a significant correlation between numbers of these interneurons and markers of neuronal cell death, for example, caspase-3 activation. Our results show that small cortical inhibitory interneurons represent an extensive signaling system that is induced to higher levels of NADPHd/nNOS expression early in the paralimbic–limbic–neocortical sequence of AD progression. We propose that nNOS/NO signaling initiated in these interneurons can serve as a marker of early cortical injury in AD. The specific role played by inhibitory interneurons and NO in the elaboration of specific neuropathologies associated with AD, that is, Aβ and neurofibrillary deposits and cell death deserves further exploration in experimental animal models.  相似文献   

14.
Stress-related glucocorticoids and glutamate release has been implicated in depression. Glutamate neurotoxicity is mediated, in part, by the production of nitric oxide via nitric oxide synthase (NOS) isoforms and mitochondrial damage. We previously reported that chronic social isolation stress triggers proapoptotic signaling in the rat prefrontal cortex, but not in the hippocampus. Given that the hippocampus is highly sensitive to stress, we examined signaling cascades underlying the hippocampal cellular protection through the NOS pathway, antioxidant capacity and heat shock protein (Hsp) expression. We investigated neuronal (nNOS) and inducible (iNOS) protein levels, subcellular protein distributions of nuclear factor-κB (NF-κB), CuZnSOD and MnSOD activity, reduced glutathione (GSH), stress-inducible Hsp70 (Hsp70i) protein expression and serum corticosterone (CORT) levels of rats exposed to 21 days of chronic social isolation, an animal model of depression, alone or in combination with 2 h of acute immobilization or cold stress (combined stress). Both acute stressors elevated CORT, with lesser magnitude increase in chronically isolated rats exposed to novel acute stress as compared to acute stressors alone, indicating compromised HPA axis activity. Acute cold decreased nuclear CuZnSOD activity and stimulated NF-κB nuclear translocation. Chronic social isolation resulted in no activation of NF-κB, but led to decreased GSH, iNOS and increased nNOS and Hsp70i levels, alterations that remained following combined stressors. Decreased mitochondrial MnSOD activity after combined stressors suggests compromised detoxifying capacity. These data indicate that Hsp70i upregulation may provide hippocampal cellular protection against chronic social isolation stress mediated by downregulation of iNOS protein expression through suppression of NF-κB activation.  相似文献   

15.
The hippocampus is rich in both glucocorticoid receptor (GR) and neuronal nitric oxide synthase (nNOS). But the relationship between the two molecules under physiological states remains unrevealed. Here, we report that nNOS knockout mice display increased GR expression in the hippocampus. Both systemic administration of 7-Nitroindazole (7-NI), a selective nNOS activity inhibitor, and selective infusion of 7-NI into the hippocampus resulted in an increase in GR expression in the hippocampus. Moreover, KCl exposure, which can induce overexpression of nNOS, resulted in a decrease in GR protein level in cultured hippocampal neurons. Moreover, blockade of nNOS activity in the hippocampus leads to decreased corticosterone (CORT, glucocorticoids in rodents) concentration in the plasma and reduced corticotrophin-releasing factor expression in the hypothalamus. The results indicate that nNOS is an endogenous inhibitor of GR in the hippocampus and that nNOS in the hippocampus may participate in the modulation of Hypothalamic–Pituitary–Adrenal axis activity via GR.  相似文献   

16.
Oxidative stress is a mediator of cell death following cerebral ischemia/reperfusion and heme toxicity, which can be an important pathogenic factor in acute brain injury. Induced expression of phase II detoxification enzymes through activation of the antioxidant response element (ARE)/Nrf2 pathway has emerged as a promising approach for neuroprotection. Little is known, however, about the neuroprotective potential of this strategy against injury in immature brain cells. In this study, we tested the hypothesis that sulforaphane (SFP), a naturally occurring isothiocyanate that is also a known activator of the ARE/Nrf2 antioxidant pathway, can protect immature neurons from oxidative stress‐induced death. The hypothesis was tested with primary mouse hippocampal neurons exposed to either O2 and glucose deprivation (OGD) or hemin. Treatment of immature neurons with SFP immediately after the OGD during reoxygenation was effective in protecting immature neurons from delayed cell death. Exposure of immature hippocampal neurons to hemin induced significant cell death, and both pre‐ and cotreatment with SFP were remarkably effective in blocking cytotoxicity. RT‐PCR analysis indicated that several Nrf2‐dependent cytoprotective genes, including NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO1), and glutamate‐cysteine ligase modifier subunit (GCLM), which is involved in glutathione biosynthesis, were up‐regulated following SFP treatment both in control neurons and following exposure to OGD and hemin. These results indicate that SFP activates the ARE/Nrf2 pathway of antioxidant defense and protects immature neurons from death caused by stress paradigms relevant to those associated with ischemic and traumatic injury to the immature brain. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Different brain regions show differential vulnerability to ischemia in vivo. Despite this, little work has been done to compare vulnerability of brain cells isolated from different brain regions to injury. Relatively pure neuronal and astrocyte cultures were isolated from mouse cortex, hippocampus, and striatum. Astrocyte vulnerability to 6 h oxygen-glucose deprivation was greatest in striatum (81.8 +/- 4.6% cell death), intermediate in hippocampus (59.8 +/- 4.8%), and least in cortex (37.0 +/- 3.5%). In contrast neurons deprived of oxygen and glucose for 3 h showed greater injury to cortical neurons (71.1 +/- 5.2%) compared to striatal (39.0 +/- 3.1%) or hippocampal (39.0 +/- 5.3%) neurons. Astrocyte injury from glucose deprivation or H(2)O(2) exposure was significantly greater in cells from cortex than from striatum or hippocampus. Neuronal injury resulting from serum deprivation was greater in cortical neurons than in those from striatum or hippocampus, while excitotoxic neuronal injury was equivalent between regions. Antioxidant status and apoptosis-regulatory genes were measured to assess possible underlying differences. Glutathione was higher in astrocytes and neurons isolated from striatum than in those from hippocampus. Superoxide dismutase activity was significantly higher in striatal astrocytes, while glutathione peroxidase activity and superoxide did not differ by brain region. Bcl-x(L) was significantly higher in striatal astrocytes than in astrocytes from other brain regions and higher in striatal and hippocampal neurons than in cortical neurons. Both neurons and astrocytes isolated from different brain regions demonstrate distinct patterns of vulnerability when placed in primary culture. Antioxidant state and levels of expression of bcl-x(L) can in part account for the differential injury observed. This suggests that different protective strategies may have different efficacies depending on brain region.  相似文献   

18.
Nitric oxide (NO) production in the sensory neurons of the rad nodose ganglion was studied by examining the distribuiotn of NO synthase (NOS) by use of NADPH diaphorase (NADPHD) histochemistry and immunohistochemistry ofr the presence of isoformes of NOS: neuronal (nNOS), endothelial (eNOS) and the inducible isoform (iNOS). Distribution and changes in NO production during acute hypoxia were studied in vital vibratome sections with the fluorescent marker for NO, diaminotriazolofluorescein (DAF-2T). Furthermore, changes in reactive oxygen species (ROS) in vibratome slices were examined utilizing 2',7'-dichlorofluorescein (DCF). By use of these histochemical methods, a positive NADPH reaction and positive immunoreactivity for eNOS were noted in all neurons observed. While for nNOS immunoreactivity, both strongly positive cells but also many negative cells are seen., no iNOS immunoreactive cells were observed. In vital vibratome slices, a dot-like distribution of fluorescence for DAF-2T, indicating production of NO, was observed in the nodose ganglion cells. Neurons exposed to hypoxia showed stronger DAF-2T fluorescence than cells exposed to normoxia, indicating an increased production of NO during hypoxia. When Ca(2+) was removed from the incubation buffer, the intensity of fluorescence for DAF-2T decreased but did not disappear completely. Using a photoconversion technique, DAF-2T was localized in the inner membrane of mitochondria in the ganglion cells by electron microscopy. The level of DCF signals for detection of ROS was higher in neurons incubated in the normoxic medium than those incubated under conditions of hypoxia. Nerve cells exposed to hypoxia followed by reoxygenation (3 min in normoxic conditions) showed higher fluorescence for DCF than those exposed to normoxia. The results of the present study demonstrate clearly that the basal production of NO in viscerosensory neurons is increased during hypoxia and is due to the isoform eNOS rather than nNOS, moreover, that ROS is augmented by reoxygenation but not during hypoxia.  相似文献   

19.
Alzheimer's disease (AD) is a complex, multi-factorial neurodegenerative disease. The aggregation of soluble β-amyloid (Aβ) into fibrillar deposits is a pathological hallmark of AD. The Aβ aggregate-induced neurotoxicity, inflammatory reactions, oxidative stress, and nitric oxide (NO) generation are strongly linked to the etiology of AD. Here, we show that the common dietary flavonoid, rutin, can dose-dependently inhibit Aβ42 fibrillization and attenuate Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells. Moreover, rutin decreases the formation of reactive oxygen species (ROS), NO, glutathione disulfide (GSSG), and malondialdehyde (MDA), reduces inducible nitric oxide synthase (iNOS) activity, attenuates mitochondrial damage, increases the glutathione (GSH)/GSSG ratio, enhances the activities of super oxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and modulates the production of proinflammatory cytokines by decreasing TNF-α and IL-1β generation in microglia. Taken together, the actions of rutin on multiple pathogenic factors deserves further investigation for the prevention and treatment of AD.  相似文献   

20.
Axotomised dorsal root ganglia (DRG) neurons show an increased expression of neuronal nitric oxide synthase (nNOS) compared with neurons from the intact ganglia. Increased nNOS expression resulted in synthesis of nitric oxide (NO) and the subsequent activation of cGMP in satellite glia cells surrounding the DRG neuron soma. In dissociated DRG we have demonstrated that the increase in nNOS expression is regulated by nerve growth factor and that the subsequent inhibition of NO production or cGMP synthesis precipitates apoptosis of neurons expressing nNOS and some non-nNOS neurons. Hence, NO or the NO-cGMP cascade appears to have a neuroprotective action in trophic factor-deprived DRG neurons. In the present study, using immunocytochemistry, we have investigated some of the factors associated with apoptosis that are activated when nNOS activity is blocked with NOS inhibitor in DRG neurons in vitro. Marked elevation of bax was observed within a few hours of NOS inhibition in nNOS containing neurons, whereas pretreatment of cultures with l-arginine completely abolished this effect in almost all nNOS neurons and 8-bromo-cGMP in some neurons. The apoptosis precipitated by NOS inhibition was also partially prevented by a number of caspase inhibitors; of those a caspase-9 blocker was the most effective. These observations further support the neuroprotective role of NO/NO-cGMP in stressed DRG neurons in an autocrine fashion that involves the suppression of bax, caspase-3 and -9 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号