首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugated linoleic acid (CLA) has profound effects on hepatic and adipocyte lipid metabolism, but little is known about its effects on intestinal lipid metabolism. We investigated the acute (22 h) and acute-after-chronic (22 h after 19 d) effects of trans-10, cis-12 CLA (t10,c12-CLA) and cis-9, trans-11 CLA (c9, t11-CLA) on triacylglycerol (TAG)-rich lipoprotein (TRL) metabolism, de novo TAG, phospholipid (PL) ((14)C-glycerol) and apolipoprotein B (apoB) ((35)S-methionine) synthesis and secretion, in the colon carcinoma (Caco-2) cell model of intestinal lipoprotein metabolism. Acute treatment with either CLA isomer did not affect TRL metabolism. However, chronic t10,c12-CLA and c9,t11-CLA supplementation followed by acute palmitic acid (PA) treatment increased the ratio of cellular to secreted de novo TAG (cTAG/sTAG) (P < or = 0.03) as a result of increased cellular de novo TAG levels. Chronic Caco-2 cell t10,c12-CLA supplementation, prior to the acute oleic acid (OA) treatment, significantly increased (P = 0.005) the ratio of cellular de novo TAG to de novo PL (cTAG/cPL), to a greater extent than that following chronic linoleic acid (LA) (P = 0.001) or c9,t11-CLA supplementation (P = 0.005). Again, this effect was attributed to increased cellular de novo TAG synthesis. Neither CLA isomer affected the ratio of secreted de novo TAG to de novo PL (sTAG/sPL). No effects on Caco-2 cell apoB synthesis and secretion were observed after acute or chronic CLA treatments. In conclusion, chronic t10,c12-CLA supplementation modulated intestinal TRL metabolism, by increasing cellular de novo TAG synthesis but had no effect on de novo TAG secretion in Caco-2 cells.  相似文献   

2.
Stearoyl-CoA desaturase (SCD) is a key enzyme that determines the composition and metabolic fate of ingested fatty acids, in particular the conversion of trans-vaccenic acid (TVA) to conjugated linoleic acid (CLA). The present study addressed the hypothesis that intestinal TVA absorption and biotransformation into CLA can be modulated by EPA and 3,10-dithia stearic acid (DSA) via altered SCD mRNA levels and desaturation indices (cis-9, trans-11-CLA:TVA and oleic acid:stearic acid ratios) in Caco-2 and T84 cells, two well-established in vitro models of the human intestinal epithelium. The study determined the effect of acute (3 h with 0.3 mm-EPA or 0.3 mm-DSA) and acute-on-chronic (1 week with 0.03 mm-EPA or -DSA, followed by respectively, 0.3 mm-EPA or -DSA for 3 h) treatments. In both cell lines, acute EPA treatment did not alter SCD desaturation indices, whereas the acute-on-chronic treatment affected these surrogate markers of SCD activity. This was associated with reduced sterol regulatory-element binding protein-1c and SCD mRNA levels. In contrast, acute and acute-on-chronic DSA treatments significantly reduced SCD desaturation indices without affecting SCD mRNA levels in Caco-2 cells. The present study on intestinal cells shows that the conversion rate of TVA to c9, t11-CLA is affected by other fatty acids present in the diet such as EPA, confirming previous observations in hepatic and mammary cell models.  相似文献   

3.
The purpose of this study is to evaluate the effect of C18 and C20 long chain fatty acids on tight junction permeability in a model of intestinal epithelium. METHODS: Confluent Caco-2 cells on porous filters with double chamber system were used to measure fluorescein sulfonic acid (FS) permeability and transepithelial electrical resistance (TEER). Lactate dehydrogenase release and ultrastructure were evaluated. Effect of 200 microM eicosapentaenoic acid (EPA, C20:5 n-3), arachidonic acid (AA, C20: 4 n-6), alpha-linoleic acid (ALA, C18: 3 n-3), linoleic acid (LA, C18: 2 n-6), or oleic acid (OA, C18: 1 n-9) enrichment in the culture medium during 24 hours were compared. The effect of the cyclooxygenase inhibitor, indomethacin, lipoxygenase inhibitors, NDGA or AA861, and antioxidant, BHT, was evaluated as a mechanism to change tight junction permeability. RESULTS: Caco-2 cells formed polarized columnar epithelial cells with densely packed microvilli and well developed junctional complexes. Addition of EPA enhanced FS permeability to 3.0+/-1.6-fold and lowered TEER to 0.59+/-1.2-fold vs. control with concentration dependency without cell injury (P<0.01-0.05). OA, AA or LA did not change, but ALA enhanced tight junction permeability. Indomethacin and AA861 normalized the changes mediated by EPA. CONCLUSIONS: EPA affects tight junction permeability in intestinal monolayer cells specifically and concentration dependently via cyclooxygenase and lipoxygenase products.  相似文献   

4.
BACKGROUND: Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE: Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN: A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS: The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION: A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.  相似文献   

5.
The effects of an n-3 PUFA-enriched diet on cardiac cell membrane phospholipid fraction compositions and associated protein kinase-C (PKC) translocation modification have never been studied in higher mammals. This is of importance since membrane fatty acid composition has been shown to influence PKC signalling pathways. In the present study, we have tested whether the incorporation of n-3 PUFA in cardiac membrane phospholipids correlated with changes in the fatty acid composition of diacylglycerols (DAG) and led to a differential translocation of PKC isoforms. Two groups of five dogs were fed the standard diet supplemented with palm oil or fish oil for 8 weeks. Dogs fed a fish oil-enriched diet showed a preferential incorporation of EPA and, to a lesser extent, of DHA, at the expense of arachidonic acid, in the circulating TAG, plasma phospholipids, erythrocyte phospholipids and cardiomyocyte phospholipid fractions. Analysis of 1,2-DAG fatty acid composition also indicated a preferential enrichment of EPA compared with DHA. Associated with these results, a reduction in the expression of PKC-delta and PKC-epsilon isoforms in the particulate fractions was observed whereas no effect was seen for PKC-alpha and PKC-zeta. We conclude that a fish oil-enriched diet induces a modification in fatty acid composition of cardiac membrane phospholipids, associated with a differential translocation of PKC isoforms. These results can be explained by the production of structurally different DAG that may participate in some of the protective effects of n-3 PUFA against various chronic diseases.  相似文献   

6.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC), cholesteryl ester (CE) and triglyceride (TAG) and for blood mononuclear cells (MNC), red blood cells (RBC) and platelets (PLAT). Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA) in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%–64% of placebo in the four portions group). We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.  相似文献   

7.
BACKGROUND & AIMS: n-3 fatty acids are expected to downregulate the inflammatory responses, and hence may decrease insulin resistance. On the other hand, n-3 fatty acid supplementation has been reported to increase glycemia in type 2 diabetes. We therefore assessed the effect of n-3 fatty acids delivered with parenteral nutrition on glucose metabolism in surgical intensive care patients. METHODS: Twenty-four surgical intensive care patients were randomized to receive parenteral nutrition providing 1.25 times their fasting energy expenditure, with 0.25 g of either an n-3 fatty acid enriched-or a soy bean-lipid emulsion. Energy metabolism, glucose production, gluconeogenesis and hepatic de novo lipogenesis were evaluated after 4 days. RESULTS: Total energy expenditure was significantly lower in patients receiving n-3 fatty acids (0.015+/-0.001 vs. 0.019+/-0.001 kcal/kg/min with soy bean lipids (P<0.05)). Glucose oxidation, lipid oxidation, glucose production, gluconeogenesis, hepatic de novo lipogenesis, plasma glucose, insulin and glucagon concentrations did not differ (all P>0.05) in the 2 groups. CONCLUSIONS: n-3 fatty acids were well tolerated in this group of severely ill patients. They decreased total energy expenditure without adverse metabolic effects.  相似文献   

8.
Dietary fatty acids have been shown to influence allergic sensitisation. Both n-3 and n-6 PUFA are involved in targeted mediation of inflammatory responses during allergic sensitisation and manifestation of atopic diseases. In the present experiments we investigated whether supplementation of DHA-enriched fish oil partly substituting dietary sunflower-seed oil, in comparison with sunflower-seed oil, supplemented to mice influences fatty acid composition of serum lipid classes. The effects of the two different diets were also investigated depending on allergic sensitisation. Supplementation of DHA and EPA in doses of 2 and 0.12 % (w/w) to non-sensitised and sensitised mice resulted in significantly increased percentile contributions of DHA to all lipid classes. In contrast, serum values of the n-6 PUFA arachidonic acid (AA) were significantly lower, both in non-sensitised and sensitised mice fed the DHA-enriched diet. The fatty acid composition of serum lipids also reflected allergic sensitisation: the EPA:AA ratio in TAG, cholesteryl esters and phospholipids in non-supplemented animals fell to 23, 29 and 29 % respectively of the original value after allergic sensitisation, whereas it decreased to 70, 80 and 76 % respectively only in the animals supplemented with DHA. In summary, allergic sensitisation alone decreased significantly the EPA:AA ratios in serum TAG, while concomitant supplementation of DHA-enriched fish oil ameliorated this decrease. We postulate from the present results that the amelioration of the severity of allergic sensitisation after DHA supplementation may be linked to altered ratios of the eicosanoid precursors EPA and AA as well as DHA needed for further metabolic activation to pro- or anti-inflammatory bioactive lipids.  相似文献   

9.
BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a role in the regulation of intestinal inflammation and is activated by both natural (polyunsaturated fatty acid; PUFAs) and synthetic (troglitazone) ligands. The fatty acid content of defined formula diets may play a role in mediating the antiinflammatory effect, but the mechanism is unclear. OBJECTIVE: We evaluated to what extent the effect of PUFAs on intestinal inflammation is mediated via PPARgamma. DESIGN: The human enterocyte-like cell line Caco-2 and human dendritic cells were stimulated by interleukin (IL) 1beta and lipoprotein polysaccharide, respectively, in the presence of PPARgamma agonists (troglitazone or PUFAs) or antagonist (GW9662). Five PUFAs were tested: alpha-linolenic acid (ALA), conjugated linoleic acid (CLA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA). Cytokine production was measured by enzyme-linked immunosorbent assay and PPARgamma, I-kappaB, and inducible nitric oxide synthase (iNOS) expression by Western blot. RESULTS: In Caco-2 cells, IL-6 secretion was significantly decreased by troglitazone, DHA, EPA, and GLA. IL-8 production was significantly decreased by troglitazone, ALA, DHA, EPA, and GLA. PPARgamma expression was significantly increased by troglitazone, DHA, and EPA. iNOS expression was significantly decreased by troglitazone, DHA, and EPA. Troglitazone and PUFAs at 0.1 mumol/L tended to increase the expression of I-kappaB. Addition of GW9662 reversed the effect of troglitazone and PUFAs at 0.1 mumol/L on IL-8 production and decreased the expression of PPARgamma. EPA and DHA also modulated the dendritic cell response to lipoprotein polysaccharide. CONCLUSIONS: The tested PUFAs exerted an antiinflammatory effect in vitro in both models. This effect of PUFAs in Caco-2 cells is similar to that of troglitazone on intestinal inflammation mediated by PPARgamma, and the potency of the antiinflammatory effect is linked to the number of double bonds.  相似文献   

10.
A higher proportion of n-3 long-chain PUFA in tissue lipids has been associated with a lower risk of CVD and some cancers. Diet is an important predictor of n-3 long-chain PUFA composition; however, the importance of non-dietary factors such as sex and age is unclear. We measured the proportion of n-3 long-chain PUFA in serum phospholipid, cholesterol ester and TAG of 2793 New Zealanders 15 years or older who participated in the 1997 National Nutrition Survey to determine differences by sex and age. Women had lower proportions of EPA and docosapentaenoic acid in phospholipid, by 0.07 (P = 0.004) and 0.10 (P < 0.001) mol%, respectively, and a higher proportion of DHA by 0.16 mol% (P = 0.001) compared with men. Intake of fish fat did not differ between men and women. There was a positive association between age and the proportion of EPA and DHA in phospholipid (P < 0.001). The sex differences in EPA and DHA were similar at all ages. Similar sex and age differences in serum cholesterol ester n-3 long-chain PUFA were found; only age differences were found in serum TAG. Sex and age differences in n-3 long-chain PUFA occur in the general population. Men and women may need to be considered separately when examining the association between disease risk and biomarkers of n-3 fatty acids.  相似文献   

11.
Monounsaturated oils, virgin olive oil (VOO) and high oleic sunflower oil (HOSO) are suggested to have selective physiologic effects on humans in the fasting state. The aim of the study was to evaluate whether two oils with equal amounts of oleic acid but with different compositions of minor fatty acids and triacylglycerol molecular species (TAG) could produce different triacylglycerol-rich lipoprotein (TRL)-TAG responses in the postprandial state. Eight normolipidemic men consumed the following three meals in random order on separate occasions with 2 wk between meals: control meal, control meal plus VOO and control meal plus HOSO. Plasma total TAG and TRL-TAG were measured hourly for 7 h after ingestion. TAG and sn-2 positional fatty acids within TAG were analyzed in the TRL fraction. Plasma total TAG concentrations in response to the dietary oils did not differ. However, TRL triglyceridemia was significantly lower after VOO intake (P < 0.05). The molecular species in the TRL fraction returned toward basal levels more quickly (P < 0.05) after VOO than HOSO intake. 2-Positional fatty acid analysis demonstrated higher proportions of stearic and palmitic acids and a lower proportion of oleic acid (P < 0.05) in TRL-TAG derived from HOSO. This study shows that VOO intake results in attenuated postprandial TAG concentration and faster TRL-TAG disappearance from blood compared with HOSO, suggesting that the oleic acid content may not be the main factor affecting TAG metabolism. Minor fatty acids such as linoleic acid and the 2-positional distribution of saturated stearic and palmitic acids into the TAG molecule may be important determinants of postprandial lipemia in normolipidemic men.  相似文献   

12.
The effects of altering the type of n-3 polyunsaturated fatty acid (PUFA) in the mouse diet on the ability of monocytes and neutrophils to perform phagocytosis were investigated. Male weanling mice were fed for 7 d on one of nine diets which contained 178 g lipid/kg and which differed in the type of n-3 PUFA and in the position of these in dietary triacylglycerol (TAG). The control diet contained 4.4 g alpha-linolenic acid/100 g total fatty acids. In the other diets, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) replaced a proportion (50 or 100 %) of the alpha-linolenic acid, and were in the sn-2 or the sn-1(3) position of dietary TAG. There were significant increases in the content of n-3 PUFA in spleen-cell phospholipids when EPA or DHA was fed. These increases were largely independent of the position of EPA or DHA in dietary TAG except when EPA was fed at the highest level, when the incorporation was greater when it was fed in the sn-2 than in the sn-1(3) position. There was no significant effect of dietary DHA on monocyte or neutrophil phagocytic activity. Dietary EPA dose-dependently decreased the number of monocytes and neutrophils performing phagocytosis. However, when EPA was fed in the sn-2 position, the ability of active monocytes or neutrophils to engulf bacteria was increased in a dose-dependent fashion. This did not occur when EPA was fed in the sn-1(3) position. Thus, there appears to be an influence of the position of EPA, but not of DHA, in dietary TAG on its incorporation into cell phospholipids and on the activity of phagocytic cells.  相似文献   

13.
Obese patients typically show a pattern of dyslipidaemia and changes in plasma fatty acid composition reflecting abnormalities in lipoprotein metabolism and dietary habits. Animals and obese adults have been widely studied; however, contradictory results have been published in children. The objective was to assess changes in plasma fatty acid composition in total plasma lipids and plasma lipid fractions in obese prepubertal children compared with those of normal weight and to evaluate changes in postprandial plasma fatty acids during a 3 h period after intake of a standardised breakfast. The study was a case-control study with thirty-four obese and twenty normal-weight prepubertal children (Tanner 1). Anthropometric and metabolic variables and fatty acid concentrations were measured in plasma and its fractions. Liquid chromatography was used to separate lipid fractions and GLC to quantify fatty acids. Plasma total fatty acids (TFA), SFA, MUFA and PUFA concentrations were higher in obese than in control children. Except for 18 : 0, 18 : 3n-3, 20 : 4n-6 and n-3 PUFA, all fatty acids in TAG were also elevated in the obese group. Fatty acids 16 : 1n-7, 18 : 0, 18 : 1n-9, 20 : 2n-6, TFA and MUFA significantly decreased between the 2nd and 3rd hour in normal-weight v. obese children. The concentration of 16 : 1n-7 was positively and the proportion of 20 : 4n-6 inversely associated with a significant increase in risk of obesity. Obese prepubertal children show an altered plasma fatty acid profile and concentrations, mainly related to the TAG fatty acid profile, with a lower clearance of fatty acids v. normal-weight prepubertal children.  相似文献   

14.
The effects of (n-3) fatty acids on the postprandial state were investigated by monitoring the alimentary responses to identical test meals fed to adults [n = 11; fasting triacylglycerol (TG) 2.55 +/- 0.24 mmol/L; mean +/- SEM] after a self-selected diet baseline period (BLP) and then after a 6-wk (n-3) fatty acid period (FOP) [ approximately 5.2 g (n-3) fatty acids] and a 6-wk control oil period (COP) administered in random order. Samples were drawn immediately prior to the test meal (time 0) and then hourly from 2 to 6 h postmeal. Postprandial plasma triacylglycerol (TG) and TG-rich lipoprotein (TRL) TG apo B48, and B100 absolute concentrations were significantly lower after FOP than after COP or BLP, while plasma cholesterol was unchanged. Normalizing the results as increments over time 0 eliminated the diet effect on all but plasma TG. Time remained a significant effect for plasma TG, TRL TG, and TRL TC. Finally, only absolute TRL B48 and absolute and incremental plasma TG concentrations displayed significant time-diet interactions. These results suggest that postprandial TRL apo B reductions are likely caused by (n-3) fatty acid suppression of both hepatic and intestinal apoB secretion/synthesis. Altered TRL metabolism, i.e. changes in postprandial TG, cholesterol, apo B48, and increase in LDL particle size, may represent an additional mechanism for the reduced heart disease risk associated with fish [(n-3) fatty acid] consumption.  相似文献   

15.
OBJECTIVE: The aim of the present study was to investigate the effect of trans-18:1 isomers compared to other fatty acids, especially saturates, on the postprandial fatty acid composition of triacylglycerols (TAG) in chylomicrons and VLDL. DESIGN: A randomised crossover experiment where five interesterified test fats with equal amounts of palmitic acid (P fat), stearic acid (S fat), trans-18:1 isomers (T fat), oleic acid (O fat), or linoleic acid (L fat) were tested. SUBJECTS: A total of 16 healthy, normolipidaemic males (age 23+/-2 y) were recruited. INTERVENTIONS: The participants ingested fat-rich test meals (1 g fat per kg body weight) and the fatty acid profiles of chylomicron and VLDL TAG were followed for 8 h. RESULTS: The postprandial fatty acid composition of chylomicron TAG resembled that of the ingested fats. The fatty acids in chylomicron TAG were randomly distributed among the three positions in accordance with the distributions in test fats. Calculations of postprandial TAG concentrations from fatty acid data revealed increasing amounts up to 4 h but lower response curves (IAUC) for the two saturated fats in accordance with previous published data. The T fat gave results comparable to the O and L fats. The test fatty acids were much less reflected in VLDL TAG and there was no dietary influence on the response curves. CONCLUSIONS: The fatty acid composition in the test fats as well as the positional distributions of these were maintained in the chylomicrons. No specific clearing of chylomicron TAG was observed in relation to time.  相似文献   

16.
Normal adiposity occurs in humans and mice deficient of adipose lipoprotein lipase (LPL) activity. Subnormal adiposity found in LPL-deficient cats is indicative of limited de novo synthesis of fatty acids (FAs). In 14 LPL-deficient (3.0 +/- 0.1 kg) and 8 normal (3.7 +/- 0.1 kg) queens, FAs in triacylglycerol (TAG), phospholipid (PL), and nonesterified FAs (NEFAs) of plasma and inguinal subcutaneous adipose were determined before and after (d 38, 61, 110, 117, and 251) dietary linseed oil supplementation (30 g/kg). By d 60, LPL-deficient queens gained body weight (+0.4 +/- 0.1 kg), developed normal body fat mass (25 +/- 2%), and were enriched in 18:3(n-3) in their plasma and adipose lipids. Adipose TAG 18:3(n-3) enrichment in LPL-deficient queens was subnormal at all sampling times and, as observed in normal queens, apparently not equilibrated by d 251. Adipose FA profiles in TAG but not PL were substantially different (P < 0.05) between LPL-deficient and normal queens; the 16:0 to 18:2(n-6) ratio was high in LPL-deficient (2.4-4.4) relative to normal queens (1.0-1.4). In LPL-deficient queens, fed-state plasma NEFA (n-6) and (n-3) enrichments were similar to those in adipose TAG, and plasma NEFA concentration was high (0.62 +/- 0.05 mmol/L) and similar to that in normal queens after withholding diet for 16 h. These data indicate that LPL deficiency in cats reduces dietary FA storage efficiency, favors storage of saturated over unsaturated FAs, and stimulates de novo FA synthesis substantive enough to support normal adiposity.  相似文献   

17.
Abstract

It is known that black soybean (BS) extract, rich in polyphenols, has beneficial effects against obesity, inflammation and insulin resistance. However, detailed effects of BS on lipid metabolism have not been documented well. In the present study, we compared fatty acid composition in visceral and subcutaneous adipose tissues of high-fat fed (HFF) rats and BS administered HFF rats. Black soybean administration for 6 weeks influenced neither body nor adipose tissue weights, blood glucose, plasma insulin levels, or insulin sensitivity. However, BS reduced several saturated (C14:0 and C16:0), monounsaturated (C14:1n-5 and C18:1n-9) and n-6 polyunsaturated (C18:2n-6, C20:3n-6, C20:4n-6 and C22:4n-6) fatty acid contents in subcutaneous fat without any change in n-3 polyunsaturated fatty acid contents. No such effect was observed in fatty acid composition in visceral fat. Long-chain fatty acids are involved in regulation of inflammation. Therefore, those reduced fatty acids may be linked to the effects on suppressing inflammation.  相似文献   

18.
BACKGROUND: Margination occurs when blood borne particles attach to the vessel wall. Triacylglycerol-rich lipoprotein (TRL) particles marginate when they bind to endothelial lipoprotein lipase (LpL). OBJECTIVE: This study was undertaken to determine whether TRL margination reflects in vivo LpL activity and whether n-3 fatty acids affect fasting and fed TRL margination. DESIGN: Healthy subjects (n = 33) began with a 4-wk, placebo (olive oil; 4 g/d) run-in period and were then randomly assigned to 4 wk of treatment with 4 g/d of ethyl esters of either safflower oil (SAF; control), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA). Margination volume (MV) was calculated by subtracting true from apparent plasma volume. RESULTS: MVs were 3 times as great during the fasting state as during the fed state (P < 0.0001). In both the fasting and the fed states, MV was significantly correlated with plasma triacylglycerol and TRL half-lives. In the fed state, MV was also correlated with preheparin LpL, whereas in the fasting state it was not. There was no significant correlation between preheparin LpL and postheparin LpL in the fasting state. Relative to SAF, EPA and DHA supplementation resulted in higher MVs by 64% and 53% (both P < 0.001), respectively, in the fasting state, without significantly reducing fasting triacylglycerol concentrations. In the fed state, DHA doubled the MV (P < 0.05), whereas EPA had no significant effect. CONCLUSIONS: The correlations between MV and TRL half-lives and preheparin LpL suggest that MV could be a reflection of whole-body LpL binding capacity. The increases in MVs with EPA and DHA supplementation suggest that these fatty acids may increase the amount of endothelial-bound LpL or its affinity for TRL.  相似文献   

19.
BACKGROUND: The intestinal mucosa functions as a barrier against harmful dietary and microbial antigens. An intact gut barrier forms a prerequisite for protection against infection and allergy. Both allergic and inflammatory mediators (e.g. IL-4, IFN-gamma) are known to compromise the epithelial barrier integrity by enhancing permeability. Breast milk provides protection against infection and allergy and contains polyunsaturated fatty acids (PUFA). AIM OF THE STUDY: Although PUFA are commonly used in infant formulas their effect on intestinal barrier is still poorly understood. Therefore the effects of distinct PUFA (n-6: LA, GLA, DGLA, AA; n-3: ALA, EPA, DHA) and a fat blend with PUFA composition similar to that of the human breast milk fat fraction, on barrier integrity were investigated. METHODS: Human intestinal epithelial cells (T84) were pre-incubated with individual PUFA or a lipase treated fat blend, with or without subsequent IL-4 exposure. Barrier integrity was evaluated by measuring transepithelial resistance and permeability. Membrane phospholipid composition was determined by capillary gas chromatography. RESULTS: DGLA, AA, EPA, DHA and to a lesser extend GLA enhanced basal TER and strongly reduced IL-4 mediated permeability, while LA and ALA were ineffective. Furthermore, the lipase treated fat blend effectively supported barrier function. PUFA were incorporated in the membrane phospholipid fraction of T84 cells. CONCLUSIONS: Long chain PUFA DGLA, AA, EPA and DHA were particularly effective in supporting barrier integrity by improving resistance and reducing IL-4 mediated permeability. Fat blends that release specific PUFA upon digestion in the gastrointestinal tract may support natural resistance.  相似文献   

20.
BACKGROUND: In the involved epidermis of patients with atopic dermatitis, changes in the metabolism of eicosanoids with increased quantities of the arachidonic acid (AA)-derived lipoxygenase products have been observed. Free eicosapentaenoic acid (EPA), a fish oil-derived alternative (n-3) fatty acid, may compete with AA, resulting in an anti-inflammatory effect. METHODS: In a 10-day double-blind, randomized, placebo-controlled trial, 22 patients hospitalized for moderate-to-severe atopic dermatitis were randomly assigned to receive daily infusions of either a n-3 fatty acid-based lipid emulsion (fish oil, 10%; 200 mL/d) or a conventional n-6-lipid emulsion (soybean oil, 10%; 200 mL/d). Topical treatment was restricted to emollients. The severity of disease was evaluated daily with scoring of erythema, infiltration, and desquamation and by subjective patient scoring of clinical manifestations. In addition, plasma-free and total-bound fatty acids and the composition of membrane fatty acids in blood cells (thrombocytes, granulocytes, and erythrocytes), lipid mediators from isolated neutrophils and platelets, and lymphocyte-activation parameters were determined. RESULTS: Twenty patients completed the trial. Marked improvement from baseline was seen in both groups. On days 6, 7, 8, and 10, disease severity score-defined as the sum of all scores-was more pronounced (p < .05) in the n-3 group compared with the n-6 group. Free arachidonic acid in plasma did not change substantially in both groups, whereas plasma-free EPA, total-bound EPA, and the membrane EPA/AA ratio markedly increased in response to n-3-lipid infusion. In parallel, EPA-derived lipid mediators appeared, whereas lymphocyte functions were unaffected. In the post-treatment period (2/4 weeks), relapse was observed in some patients after n-3 psoralene-ultraviolet A (PUVA) infusion, whereas there was a marked long-term improvement in the n-6 group. CONCLUSIONS: IV n-3-fatty acid administration is effective in acutely improving the severity of atopic dermatitis, paralleled by changes in plasma and membrane fatty acid composition and lipid mediator synthesis. The long-term beneficial effects of IV n-6 fatty acids should be evaluated further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号