首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. METHODS: We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. RESULTS: BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. CONCLUSIONS: This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.  相似文献   

2.
3.
4.
Cancer is a multistep process resulting from an accumulation of several genetic changes. The determination of cooperating events in experimental models can help scientists decipher specific neoplastic pathways and place genes with similar functions in complementation groups. In leukemia models, retrovirus tagging is a powerful approach to determine genes that cooperate with oncogenic transgenes or tumor suppressors that have undergone targeted deletion. Experimental models for B and T cell leukemias involving transgenic c-myc were the first to show the utility of retroviral tagging. Here we review these experiments and present examples of new models of myeloid leukemia where retroviruses have collaborated with a transgene [Cbfbeta-MYH111 from Inv(16)] and with loss of a tumor suppressor (Ink4b) mice to induce disease.  相似文献   

5.
6.
7.
8.
The p15Ink4b gene is frequently hypermethylated in myeloid neoplasia and has been demonstrated to be a tumor suppressor. Since it is a member of the INK4b family of cyclin-dependent kinase inhibitors, it was initially presumed that its loss in leukemic blasts caused a dysregulation of the cell cycle. However, animal model experiments over the last several years have produced a very different picture of how p15Ink4b functions in hematopoietic cells and how its loss contributes to myelodysplastic syndrome and myeloid leukemia. It is clear now, that in early hematopoietic progenitors, p15Ink4b functions outside of its canonical role as a cell cycle inhibitor. Its functions are involved in signal transduction and influence the development of erythroid, monocytic and dendritic cells.  相似文献   

9.
10.
11.
12.
13.
Cyclooxygenase (COX) exists as two isoforms: COX-1, which is constitutively expressed in most cell types; and COX-2, which is inducible by lipopolysaccharide (LPS) and cytokines in a variety of cell types. Although previous studies have implicated two DNA binding proteins, interferon regulatory factor (IRF)-1 and IRF-2, in the regulation of LPS- and IFN-gamma-induced COX-2, their effects in vivo and in vitro are not well-defined. Using real-time PCR, COX-2 gene expression in the livers and lungs of mice challenged in vivo and in macrophages stimulated with LPS in vitro was investigated in wild-type and in IRF-1 and IRF-2 knockout mice. In response to 35 mg/kg LPS, IRF-1-, but not IRF-2-deficient mice, exhibited much poorer induction of COX-2 gene expression in both the livers and lungs. In vitro, COX-2 mRNA levels were also poorly induced in IRF-1-deficient macrophages, while IRF-2- deficient macrophages exhibited higher levels than in normal macrophages. IRF-1 and IRF-2 were confirmed to activate and repress expression of the COX-2 promoter, respectively, in a transient transfection system and the role of specific DNA binding sites confirmed by site-specific mutagenesis. Collectively, these data provide evidence for an important role for IRF-1 in vivo and in vitro and for IRF-2 in vitro in the regulation of COX-2 expression by LPS.  相似文献   

14.
15.
16.
17.
Serum from lipopolysaccharide-treated mice (postendotoxin serum, PES) induces the differentiation of M1 myeloid leukemia cells into mature macrophages, as well as supporting the proliferation of the interleukin 6 (IL6)-dependent B9 hybridoma cells. The kinetics of appearance of these two activities in PES were identical. To determine whether these two activities are due to the presence of the same substance, we tested whether anti-IL6 antibodies could neutralize the differentiation-inducing activity of PES. We found that anti-IL6 antibodies completely neutralized the proliferation of B9 cells and resulted in a 60% neutralization of the differentiation-inducing activity of PES. Anti-interferon alpha/beta (INF alpha/beta) antibodies neutralized 70% of the differentiation-inducing activity of PES. These data suggest that the differentiation-inducing activity of PES is not limited to IL6, and that PES contains additional factors such as INF alpha/beta that are capable of inducing differentiation of M1 cells.  相似文献   

18.
19.
20.
AIM: To investigate the inhibitory effect of tumor suppressor p33ING1b and its synergy with p53 gene in hepatocellular carcinoma (HCC). METHODS: Recombinant sense and antisense p33ING1b plasmids were transfected into hepatoma cell line HepG2 with lipofectamine. Apoptosis, G0/G1 arrest, cell growth rate and cloning efficiency in soft agar of HepG2 were analyzed after transfection. In three hepatoma cell lines with different endogenous p53 gene expressions, the synergistic effect of p33ING1b with p53 was analyzed by flow cytometry and luciferase assay was performed to detect the activation of p53 downstream gene p21WAF1/CIP1. In addition, the expression and mutation rates of p33ING1b in HCC tissues were measured by immunohistochemistry and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). RESULTS: Overexpression of p33ING1b inhibited cell growth of HepG2, induced more apoptosis and protected cells from growth in soft agar. Combined transfer of p33ING1b and p53 gene promoted hepatoma cell apoptosis, G0/G1 arrest and elevated expression of p21WAF1/CIP1. Immunostaining results showed co-localized P33ING1b with P53 protein in HCC tissues and there was a significant relation between protein expression rates of these two genes (P<0.01). Among 28 HCC samples, p33ING1b presented a low gene mutation rate (7.1%). CONCLUSION: p33ING1b collaborates with p53 in cell growth inhibition, cell cycle arrest and apoptosis in HCC. Loss or inactivation of p33ING1b normal function may be an important mechanism for the development of HCC retaining wildtype p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号