首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effects of ,-methylene-adenosine triphosphate, (,-methylene ATP, a P2-receptor desensitising agent) have been evaluated on vasoconstrictor responses elicited by exogenous agonists or electrical field stimulation in isolated perfused SHR or WKY tail arteries and on tritium release elicited by electrical field stimulation in SHR-tail arteries pre-labeled with 3H-noradrenaline.Exposure to ,-methylene ATP (0.1 mol/l) significantly inhibited vasoconstrictor responses to electrical field stimulation in SHR tail arteries. These inhibitory effects were not further increased at a higher concentration of ,-methylene ATP (1 mol/l). In WKY tail arteries, ,-methylene ATP (1 mol/l) failed to significantly inhibit vasoconstrictor responses to electrical stimulation.In SHR tail arteries prelabelled with 3H-noradrenaline, ,-methyleneATP (1 mol/l) did not inhibit the stimulation evoked release of tritium. However, at this concentration, ,-methylene ATP significantly antagonized the vasoconstrictor responses of SHR tail arteries induced by exogenous ATP (1 mol/l), ,-methylene ATP (30 mol/l), a stable agonist at P2-receptors, or 60 mmol/l KCl. These effects of ,-methylene ATP on contractile responses to KCl were not observed in WKY-tail arteries.In tail arteries obtained from reserpine pretreated SHR, despite a 85–95% decrease in endogenous noradrenaline tissue content, the vasoconstrictor responses induced by periarterial field stimulation were greatly diminished, but not abolished. These residual responses to periarterial field stimulation were not antagonized by prazosin (0.1 mol/l), but were practically abolished by the addition of ,-methylene ATP (1 mol/l).In tail arteries from WKY rats pretreated with reserpine, exposure to prazosin (0.1 mol/l) further reduced the residual responses elicited by electrical field stimulation. In these WKY-tail arteries, addition of ,-methylene ATP (1 mol/l) did not further inhibit the remaining vasoconstrictor response obtained in the presence of prazosin.While our results suggest a significantly greater cotransmitter role for ATP with noradrenaline in tail arteries of SHR compared with control normotensive WKY rats, additional effects of ,-methylene ATP not involving P2 receptors cannot be entirely excluded.  相似文献   

2.
Summary In the isolated nerve-muscle preparation of the cat nictitating membrane exposure to 0.04 M of the scorpion venom tityustoxin (TsTX) increased significantly the overflow of 3H-noradrenaline and the responses elicited by postganglionic nerve stimulation (1200 pulses, 0.5 ms duration, supramaximal voltage). Concentration effect curves to exogenous (-)-noradrenaline were not affected in the presence of this concentration of TsTX.The enhanced release of 3H-noradrenaline obtained during nerve stimulation as well as the increase of the postsynaptic responses observed during exposure to TsTX were more pronounced at 4 Hz than at 20 Hz. The increase in the overflow of noradrenaline observed with the toxin was selective for nerve stimulation since the release evoked by tyramine was not affected by TsTX.TsTX did not increase further the enhancement of 3H-noradrenaline release obtained in the presence of 18 mM tetraethylammonium (TEA). On the other hand, both TsTX and TEA were able to increase further the overflow of 3H-noradrenaline after block of the presynaptic alpha-adrenoceptors with phenoxybenzamine 0.29 or 2.9 M.In slices of rat cerebral cortex, TsTX 0.04 M increased 3H-noradrenaline release induced by 10 mM and by 20 mM KCl. The increased release evoked by the toxin was more pronounced for the lower concentration of K+.An increased release of 3H-noradrenaline in the presence of the toxin was also observed in rat hypothalamic slices stimulated with 20 mM K+. The K+ stimulated induced release of 3H-noradrenaline was also increased by 1.8 mM TEA. As shown for the peripheral nervous, system the simultaneous addition of TEA and TsTX did not result in additive effects when compared with the effects of the two agents added separately. Tityustoxin did not modify the metabolic pattern of the neurotransmitter released by K+ from rat hypothalamic slices.It is concluded that TsTX increases the stimulation-induced release of 3H-noradrenaline from both peripheral and central noradrenergic nerve terminals. Tityustoxin appears to act on the nerve terminal by a mechanism similar to that of TEA, an agent known to enhance the amount of noradrenaline released by nerve stimulation by increasing the duration of the action potentials.  相似文献   

3.
Release of endogenous ATP elicited by electrical (neural) stimulation and exogenous agonists was studied in the rat isolated vas deferens. The aims were to dissect neural and postjunctional contributions to the nerve activity-evoked overflow of ATP and to clarify the role of transmitter receptors and calcium in postjunctional ATP release.In tissues preincubated with [3H]-noradrenaline, electrical stimulation (100 pulses/10 Hz) elicited contraction and an overflow of tritium and ATP. Contractions as well as ATP overflow were reduced by prazosin 0.3 M and even more so by prazosin 0.3 M combined with suramin 300 M. They were also reduced by nifedipine 10 M and even more so by nifedipine 10 M combined with ryanodine 20 M (the additional effect of ryanodine on ATP overflow was not significant). In tissues not pretreated with [3H]-noradrenaline, exogenous noradrenaline 10 M and ,-methylene ATP 10 M elicited contraction and an overflow of ATP. Responses to noradrenaline were blocked by prazosin 0.3 M but not suramin 300 M and were greatly reduced by nifedipine 10 M and in Ca2+-free medium. Responses to ,-methylene ATP were blocked by suramin 300 M but not prazosin 0.3 M were reduced by nifedipine 10 M (effect on ATP overflow not significant) and were reduced even more in Ca2+-free medium. Neuropeptide Y 0.3 M caused only very small contraction and ATP overflow. The electrically as well as the agonist-evoked ATP overflow correlated well with the contraction responses except in experiments with suramin which retarded the removal, by vas deferens tissue, of ATP from the medium.Itsis concluded that the overflow of ATP from rat vas deferens elicited by electrical (neural) stimulation is at least 90% postjunctional, presumably smooth muscle, in origin. ATP is released from postjunctional cells as a consequence of both 1-adrenoceptor and P2-purinoceptor activation. Ca2+ is a second messenger in the postjunctional ATP release response; its major part enters through L-type channels. A purely neural overflow of ATP was not isolated under the conditions of the experiments. Correspondence to: R. Bültmann at the above address  相似文献   

4.
Summary 3H-Noradrenaline release in the rabbit hippocampus and its possible modulation via presynaptic dopamine receptors was studied. Hippocampal slices were preincubated with 3H-noradrenaline, continuously superfused in the presence of cocaine (30 mol/l) and subjected to electrical field stimulation. The electrically evoked tritium over-flow from the slices was reduced by 0.1 and 1 mol/l dopamine and apomorphine, but significantly enhanced by 10 mol/l apomorphine or by 0.1 and 1 mol/l bromocriptine. If the 2-adrenoceptor antagonist yohimbine (0.1 mol/l) was present throughout superfusion, the inhibitory effects of dopamine and apomorphine were more pronounced and even 10 mol/l apomorphine and 1 mol/l bromocriptine inhibited noradrenaline release. Qualitatively similar observations were made in the presence of another 2-antagonist, idazoxane (0.1 mol/l). In the presence of the D2-receptor antagonist domperidone (0.1 mol/l) the inhibitory effects of dopamine were almost abolished, whereas both apomorphine (>1 mol/l) and bromocriptine (>0.01 mol/l) greatly facilitated noradrenaline release. The D2-receptor agonist LY 171555 (0.1 and 1 mol/l) significantly reduced the evoked noradrenaline release whereas the D1-selective agonist SK & F 38393 was ineffective at similar concentrations. The effects of LY 171555 were abolished in the presence of domperidone (0.1 mol/l) but remained unchanged in the presence of yohimbine or idazoxane (0.1 mol/l, each).At 1 mol/l the D2-receptor antagonists domperidone and (-)sulpiride significantly increased the evoked noradrenaline release by about 10%. However, at this concentration, domperidone (but not (-)sulpiride) affected also basal tritium outflow. Bulbocapnine and the preferential D1-receptor antagonists SCH 23390 enhanced the evoked noradrenaline release already at 0.1 mol/l. Their marked facilitatory effects (50 to 60% increase at 1 mol/l) were reduced in the presence of idazoxane (0.1 mol/l) and almost abolished in the presence of 0.1 mol/l yohimbine, whereas the increase due to 1 mol/l (-)sulpiride persisted under these conditions.The evoked tritium efflux from rabbit hippocampal slices preincubated with 3H-serotonin was not affected by dopamine receptor agonists.From our results we conclude that hippocampal noradrenaline, but not serotonin release, is modulated via D2-dopamine receptors. In addition, our results provide evidence for more or less pronounced 2-adrenoceptor agonistic properties of dopamine and 2-adrenoceptor antagonistic properties of apomorphine, bromocriptine, SCH 23390 and bulbocapnine in this noradrenaline release model from CNS tissue.  相似文献   

5.
Summary The outflow of noradrenaline, 3,4-dihydroxyphenylglycol (DOPEG) and 3,4-dihydroxymandelic acid (DOMA) from rabbit perfused hearts was studied by chromatography on alumina followed by high pressure liquid chromatography with electrochemical detection. In the absence of drugs and without nerve stimulation, the outflow of endogenous noradrenaline over a period of 108 min averaged 0.17 pmol×g–1×min–1 and the outflow of DOPEG 2.1 pmol×g–1×min–1. The outflow of DOMA was below the detection limit (<0.13 pmol×g–1×min–1). The effect of perfusion with (–)-noradrenaline 0.1, 1 or 10 mol/l for 18 min was then investigated. As the concentration of noradrenaline increased so did the outflow of DOPEG. Moreover, DOMA was found in the venous effluent during and after perfusion with noradrenaline 1 or 10 mol/l. The increase in the outflow of DOPEG and DOMA was almost abolished when cocaine 10 mol/l was present during the perfusion with noradrenaline 1 mol/l. The release of endogenous noradrenaline by sympathetic nerve stimulation or tyramine 10 mol/l, but not the release evoked by nicotine 30 mol/l, was accompanied by an increase in the outflow of DOPEG; an outflow of DOMA was not observed.It is concluded that, in the rabbit perfused heart, DOPEG is an important metabolite of endogenous noradrenaline. DOMA is at best a minor product, either when the neurones are at rest or when noradrenaline is released by sympathetic nerve stimulation, nicotine or tyramine. DOMA is formed in detectable amounts when the tissue is exposed to a high concentration of exogenous noradrenaline. Like DOPEG, it is formed intraneuronally. The results confirm and extend those obtained previously on guinea-pig incubated atria. They make it unlikely that, in these tissues at least, DOMA formation is one of the physiological pathways of noradrenaline catabolism.  相似文献   

6.
Contractions, release of noradrenaline and r elease of ATP elicited by the indirectly acting sympathomimetic amine tyramine and responses elicited by exogenous noradrenaline were studied in the isolated vas deferens of the guinea pig. Release of noradrenaline was assessed as overflow of tritium after preincubation with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique.In tissues pretreated with pargyline 1 mM, tyramine 300 M, when added to the superfusion medium for 2 min, elicited contraction and an overflow of tritium (mainly [3H]-noradrenaline) and ATP. Contraction and ATP overflow responses were prevented and tritium overflow was greatly reduced by desipramine 10 M Prazosin 0.3 M abolished contractions and evoked ATP overflow without changing tritium overflow. Blockade of postjunctional P2-purinoceptors by suramin 300 M caused a marked decrease of tyramine-evoked contractions and a slight reduction of tritium overflow whereas evoked ATP overflow was markedly increased. The effect on contraction was not shared by two other P2-purinoceptor antagonists, namely pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS) 32 M and diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) 32 M: PPADS increased contractions about fourfold, whilst DIDS had no effect at all. When the vas deferens was superfused for 24 min with medium containing tyramine 300 M, evoked contractions and tritium overflow continued throughout whereas ATP overflow faded rapidly to basal values. In the presence of prazosin 0.3 M, tyramine 300 M again failed to elicit contractions as well as an overflow of ATP. Application of noradrenaline 10 M instead of tyramine also resulted in prolonged contraction and an overflow of ATP that declined rapidly.It is concluded that all ATP released by tyramine is non-neuronal in origin, secondary to the activation of postjunctional 1-adrenoceptors by released noradrenaline. The non-neural ATP does not seem to play a functional role in smooth muscle contraction and derives from a postjunctional source which is subject to a rapid depletion upon sustained 1-adrenoceptor activation.  相似文献   

7.
Summary Phorbol 12-myristate 13-acetate (PMA; 0.03, 0.1 and 1.0 mol/l), a protein kinase C activating phorbol ester, significantly enhanced the stimulation-induced (S-I) outflow of radioactivity at 5 Hz stimulation in mouse atria preincubated with [3H]-noradrenaline, whereas a phorbol ester which does not activate protein kinase C, phorbol 13-acetate (0.1 mol/l), had no effect. This suggests that protein kinase C may have a role in modulating sympathetic neurotransmission.Polymyxin B (7 and 21 mol/l), an inhibitor of protein kinase C, had no effect on the S-I outflow of radioactivity. However, it had a significant inhibitory effect in a concentration of 70 mol/l. Polymyxin B (21 mol/l) reduced the facilitation of the S-I outflow of radioactivity produced by PMA (0.03 mol/l), 8-bromo-cyclic AMP (90 mol/l), tetraethylammonium chloride (300 mol/l), and idazoxan (0.1 mol/l). Furthermore, when a higher frequency of stimulation was applied (10 Hz rather than 5 Hz), polymyxin B (21 pmol/1) by itself inhibited the S-I outflow of radioactivity.In the presence of a concentration of PMA (0.1 mol/l) that was maximally effective in enhancing the S-I outflow of radioactivity, both idazoxan (0.1 mol/l) and 8-bromocyclic AMP (90 mol/l) still enhanced the S-I outflow. This suggests that these agents are not operating through protein kinase C and further suggests that the inhibitory effect of polymyxin B on these agents cannot be due to inhibition of protein kinase C. The effects of clonidine on the S-I outflow were not affected by a maximally effective concentration of PMA (0.1 mol/l). These results suggest that protein kinase C is not involved in a 2-adrenoceptor mediated modulation of noradrenaline release. Send offprint requests to I. F. Musgrave at the above address  相似文献   

8.
Summary In rabbit jejunal arteries, the membrane potential of single smooth muscle cells decreased on the application of noradrenaline 3 mol/1. LY 171555 1 mol/1 did not change, whereas SKF 38393 10 mol/1 reversed the effect of noradrenaline. When prostaglandin F2 (PGF2) was used to evoke depolarization in the presence of prazosin 0.1 mol/1, rauwolscine 1 mol/1 and propranolol 1 mol/1, both SKF 38393 10 mol/1 and dopamine 10 mol/1 repolarized the membrane. SCH 23390 1 mol/1 antagonized the effects of SKF 38393 10 mol/1 and dopamine 10 mol/1. Thus, the change in membrane potential is mediated by a DA1-recep-tor.  相似文献   

9.
Summary The sucrose gap technique was used to study the effects of applied adrenoceptor agonists on membrane potential and non-adrenergic, non-cholinergic inhibitory junction potentials (IJPs), in the smooth muscle of the circular coat of guinea-pig caecum. Noradrenaline (10 nmol/1–100 mol/l), phenylephrine (1–100 mol/l) and isoprenaline (0.1–100 mol/l) caused hyperpolarisations of the smooth muscle membrane which were rapid in onset and effect. The magnitudes of hyperpolarisations elicited by noradrenaline were significantly reduced by the non-specific -adrenoceptor antagonist phentolamine (10 gmol/l), the1-adrenoceptor antagonist prazosin (1 mol/l) and the -adrenoceptor antagonist propranolol (5 gmol/1). The 2-antagonist yohimbine (10 gmol/l) did not significantly reduce the magnitude of the hyperpolarisations induced by noradrenaline. Noradrenaline application caused a reduction in UP amplitude, during hyperpolarisation, by up to 50%. The reduction of the UP amplitude elicited by noradrenaline was significantly antagonised by yohimbine and phentolamine, but not by prazosin or propranolol. Clonidine caused a reduction of UP amplitude by up to 20%, but neither phenylephrine nor isoprenaline caused any significant reduction in UP amplitude. It is concluded that the hyperpolarising responses to exogenous noradrenaline in the circular muscle of guinea-pig caecum are mediated by postjunctional 1- and -adrenoceptors, and that the inhibition of UP amplitude is mediated by prejunctional 2-adrenoceptors. Send offprint requests to G. Burnstock at the above address  相似文献   

10.
The effects of ATP and analogues on the release of previously incorporated 3H-noradrenaline were studied in cultured sympathetic neurons derived from superior cervical ganglia of neonatal rats. Electrical field stimulation (40 mA at 3 Hz) of the neurons for 10 s markedly enhanced the outflow of tritium. ATP applied for 5 s to 2 min at concentrations of 0.01 to 1 mmol/l caused a time- and concentration-dependent overflow with half maximal effects at about 10 s and 100 mol/l, respectively. 2-Methylthio-ATP was equipotent to ATP in inducing 3H-overflow. ADP (100 mol/l), when applied for 2 min, also caused a small 3H-overflow, but , -methylene-ATP (100 mol/l), AMP (100 mol/l), R(–)N6-(2-phenylsiopropyl)-adenosine (R(–)-PIA; 10 mol/l) and 5-N-ethylcarboxamidoadenosine (NECA; 1 mol/l) did not. The 3H-overflow induced by 10 s applications of 100 mol/l ATP was abolished by suramin (100 mol/l) and reduced by about 70% by reactive blue 2 (3 mol/l). Electrically evoked overflow, in contrast, was slightly enhanced by suramin, but not modified by reactive blue 2. Xanthine amine congener (10 mol/l) and hexamethonium (10 mol/l) did not alter ATP-evoked release. Removal of extracellular Ca2+ from the medium reduced ATP- and electrically induced overflow by about 95%. Tetrodotoxin (1 mol/l) abolished electrically evoked 3H-overflow but inhibited ATP-induced overflow by only 70%. The 2-adrenoceptor agonist UK 14,304 at a concentration of 1 mol/l diminished both electrically and ATP-evoked tritium overflow by approximately 70%. These results indicate that activation of P2-purinoceptors stimulates noradrenaline release from rat sympathetic neurons. The release resembles electrically induced transmitter release, but additional mechanisms may contribute. Correspondence to: S. Boehm at the above address  相似文献   

11.
Summary The possible involvement of ATP, in addition to noradrenaline, in nicotine-evoked vasoconstriction was studied in branches of the ileocolic artery of the rabbit. For measurement of vasoconstrictor responses, the arteries were simultaneously incubated and perfused. For measurement of the release of [3H]-noradrenaline, they were preincubated with [3H]-noradrenaline and then superfused.Prazosin (0.1 mol/l) antagonized the constrictor effect of exogenous noradrenaline but not that of exogenous ATP. Desensitization of P2X-receptors by ,-methylene ATP markedly attenuated the effect of exogenous ATP but not that of noradrenaline. The presumed P2-purinoceptor antagonist suramin (100 mol/l) reduced the maximal contraction obtainable with noradrenaline and shifted the concentration-response curve for the constrictor effect of ,-methylene ATP to the right, but did not change the effect of ATP. Nicotine elicited monophasic vasoconstrictions which faded while nicotine was still in the medium. The concentration-response curve was bell-shaped with an EC50 of 50 mol/l and a maximal effect at 180 mol/l, and the exposure time-response curve indicated that responses were maximal after 5 s of contact of nicotine (180 mol/l) with the tissue. Neither prazosin 0.1 mol/l nor desensitization by ,-methylene ATP changed the time course of the response to nicotine, but both depressed the magnitude of the responses over the whole concentration- and exposure time-response curves. The depression was greater with prazosin than with ,-methylene ATP. Desensitization by ,-methylene ATP or addition of suramin 100 mol/l practically abolished the prazosin-resistant part of the response. The effect of nicotine was blocked by hexamethonium as well as by sympathetic denervation by 6-hydroxydopamine. Prazosin, ,-methylene ATP and suramin did not reduce the nicotine-evoked overflow of tritium from arteries preincubated with [3H]-noradrenaline.The results indicate that activation of prejunctional nicotine receptors releases both noradrenaline and ATP (or a similar compound), and that the latter also contributes to the ensuing effector cell response. The adrenergic component predominated over the purinergic component, in contrast to certain electrically evoked responses. Adrenergic and purinergic components seemed to cooperate synergistically at low degrees of postjunctional receptor activation. The effect of suramin against the purinergic component in the effect of nicotine, as opposed to the lack of an effect against exogenous ATP, raises questions concerning the identity and site of action of the purinergic transmitter. Send offprint requests to K. Starke at the above address  相似文献   

12.
Summary A possible contribution of adenine nucleotides to the endogenous purinergic, A1-receptor-mediated inhibition of noradrenaline release was studied in rabbit occipito-parietal cortex slices. The slices were preincubated with [3H]-noradrenaline and then superfused and stimulated electrically, in most experiments by trains of 6 pulses/100 Hz. A few experiments were carried out in rat occipito-parietal cortex slices. The A1-purinoceptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 1–100 nmol/l) as well as the enzyme adenosine deaminase (0.1–10 U/ml) increased the electrically evoked overflow of tritiated compounds. The maximal increase was by about 85% for both DPCPX and adenosine deaminase. The increases obtained with maximally effective concentrations of DPCPX and adenosine deaminase were not additive. The 1-adrenoceptor-selective agonist methoxamine (10 but not 1 mol/l) reduced the evoked overflow. Its effect was antagonized by yohimbine 1 mol/l but then not attenuated further by DPCPX100 nmol/l.L-Glutamate (300 mol/l–2.3 mmol/l) also reduced the evoked overflow of tritium. Its effect was not changed by yohimbine 1 mol/l but greatly, and to the same extent, attenuated by DPCPX 100 mol/l and adenosine deaminase 3 U/ml. Neither the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine nor omission of Mg++ changed the inhibition by glutamate. Glutamate did not alter the basal efflux of tritium from rabbit cortex slices under any experimental condition. In contrast, glutamate (100 mol/l and 1 mol/l) caused an immediate, marked and transient acceleration of tritium outflow from rat occipitoparietal cortex slices (medium without Mg++). It is concluded that adenosine but not an adenine nucleotide mediates the tonic purinergic presynaptic inhibition of noradrenaline release in rabbit brain cortex. The marked degree of disinhibition by DPCPX and adenosine deaminase underscores the potential physiological role of this inhibition. The purinergic inhibitory tone is reinforced by glutamate, indicating that glutamate releases adenyl compounds in rabbit brain cortex. Again adenosine but not an adenine nucleotide mediates the indirect inhibition by glutamate of the release of noradrenaline. The noradrenaline-releasing effect that glutamate exerts in rat occipito-parietal cortex does not occur in rabbit occipito-parietal cortex. Methoxamine depresses the release of noradrenaline in rabbit brain cortex directly at presynaptic 2-adrenoceptors rather than by release of purines.Correspondence to I. von Kügelgen at the above address  相似文献   

13.
Summary The aim of the present study was to assess the different processes contributing to the contraction induced by noradrenaline (NA, 1 gmol/l) in the rat isolated aorta. Pretreatment with maximally effective concentrations of nifedipine or cromakalim reduced the NA-induced contraction to 80 ± 3.5% or 63 ± 2.0%, respectively, without alteration of the shape of the response. After pretreatment with Mn2+, NA caused a transient phasic contraction followed by a sustained tonic component, comparable to the response obtained in Ca2+-free medium. Ryanodine — in the presence of extracellular Ca2+ — caused a slight increase of resting tension, but did not modify the NA-induced contraction. In Ca2+-free medium the contraction elicited by NA consisted of a transient phasic and a sustained tonic component. The amplitude of the phasic contraction decreased exponentially with the time of exposure to Ca2+-free medium. The phasic component was identified as elicited by Ca2+ released from the sarcoplasmic reticulum (SR) by means of ryanodine. If Ca2+ depleted tissues (80 min in Ca2+-free solution) were exposed to Ca2+ in the presence of Mn2+ or cromakalim, the NA-induced phasic response was inhibited, suggesting that Mn2+ and cromakalim blocked the refilling of the store. It can be concluded that activation of 1-adrenoceptors in the rat aorta by NA elicits Ca2+-entry processes which have a different sensitivity to nifedipine, cromakalim and Mn2+. The Ca2+ released from SR contributes about 20% to the overall contractile response. Our data suggest that the depleted SR can be refilled from the extracellular space via a direct cromakalim- and Mn2+-sensitive pathway. Send offprint requests to: B. Wilffert at the above address  相似文献   

14.
Summary The effects of the classical dopamine DA2-receptor agonist quinpirole (LY 171555) and the recently characterized DA2-receptor agonist, carmoxirole (EMD 45609), on neurotransmission in rat isolated kidney were investigated. After preincubation with 3H-noradrenaline, the renal nerves were electrically stimulated. The stimulation induced (S-I) outflow of radioactivity was taken as an index of noradrenaline release. Quinpirole (0.3 mol/l) inhibited S-I outflow of radioactivity and pressor responses to renal nerve stimulation (RNS) at 1 Hz. Both effects of quinpirole were blocked by the DA2-receptor antagonist S(–)-sulpiride (10 mol/l). The 1, 2-adrenoceptor antagonist phentolamine (1 mol/l) did not block the inhibitory effect of quinpirole. Carmoxirole (0.003 and 0.03 mol/l) did not alter and carmoxirole (0.3 mol/l) even enhanced S-I outflow of radioactivity, however, pressor responses to RNS were markedly reduced by carmoxirole (0.003–0.3 mol/l). Pressor responses to RNS were also markedly reduced by the 1-adrenoceptor antagonist prazosin (0.1 mol/l). Carmoxirole (0.3 mol/l), prazosin (0.1 mol/l) and phentolamine (1 mol/l) totally abolished pressor responses to exogenous noradrenaline (0.05 mol/l). In contrast, quinpirole (0.3 mol/l) did not alter pressor responses to exogenous noradrenaline (0.05 mol/l). Furthermore, carmoxirole (0.003–0.3 mol/l) markedly reduced pressor responses induced by the 1-adrenoceptor agonist methoxamine (1 mol/l) but even the highest concentration of carmoxirole (0.3 mol/l) had no effect on pressor responses induced by bolus injections of either neuropeptide Y (1.5 ng) or angiotensin II (1 ng). Phentolamine (1 mol/l) by itself markedly enhanced S-1 outflow of radioactivity and pressor responses to RNS were virtually unchanged. In the presence of phentolamine carmoxirole (0.03 and 0.3 mol/l) and quinpirole inhibited S-I outflow of radioactivity and pressor responses to RNS. Phentolamine resistant pressor responses to RNS were also inhibited by the P2X-receptor desensitizing agent , -methylene adenosine triphosphate (mATP, 1 mol/l), which by itself in the presence of phentolamine did not alter S-I outflow of radioactivity. The inhibitory effects of carmoxirole (0.3 mol/l) in the presence of phentolame (1mol/l) were antagonized by S(–)-sulpiride (10 mol/l). The data suggest that activation of prejunctional DA2-receptors by quinpirole inhibits noradrenaline release and thereby reduces pressor response to RNS at 1 Hz in rat isolated kidney. Carmoxirole activates prejunctional inhibitory DA2-receptors, but this effect is masked by simultaneous blockade of inhibitory prejunctional -adrenoceptors. Pressor responses to RNS at 1 Hz in rat isolated kidney are largely due to neuronally released noradrenaline whereas phentolamine resistant pressor responses to RNS at 1 Hz are most likely due to ATP, which is co-released with noradrenaline. Carmoxirole inhibits pressor responses to RNS at 1 Hz as well as pressor responses induced by either exogenous noradrenaline or methoxamine by blocking postjunctional 1-adrenoceptors. In addition carmoxirole and quinpirole seem to block phentolamine resistant pressor responses by inhibiting ATP release through activation of prejunctional DA2-receptors. Send offprint requests to L. C. Rump at the above address  相似文献   

15.
The hemolytic activity of -cyclodextrin (-CyD) on rabbit erythrocytes was reduced by the introduction of negatively-charged groups onto the hydroxyls of -CyD; the membrane disrupting abilities decreased in the order of -CyD > 2-hydroxypropyl--CyD (HP--CyD) > sulfobutyl--CyD (SB--CyD) >> -CyD sulfate (S--CyD). Under pre-hemolytic concentrations, both -CyD and SB--CyD induced shape changes of membrane invagination on the erythrocytes. In sharp contrast, S--CyD showed biphasic effect on the shape of the erythrocytes; i.e. the crenation at relatively low concentrations and the invagination at higher concentrations. The S--CyD-induced membrane crenation arose from a direct action on the membranes rather than cell metabolism-mediated effects. Unlike -CyD, S--CyD was found to bind to the erythrocytes and may be confined to the outer surface of the membrane bilayer, which may expand the exterior layer relative to the cytoplasmic half, thereby inducing the cells to crenate. On the other hand, the membrane invagination mediated by the three - CyDs was initiated by extracting specific membrane lipids from the cells, depending upon their inclusion abilities, subsequently leading to the lysis of the cells. These results indicate that SB--CyD and S--CyD interact with the erythrocyte membranes in a differential manner and possess lower membrane disrupting abilities than the parent -CyD and HP--CyD.  相似文献   

16.
Purpose. The mechanism for the biliary excretion of 17-estradiol170-d-glucuronide (E217G), a cholestatic metabolite of estradiol, isstill controversial. The purpose of the present study is to examine thetransport of E217G across the bile canalicular membrane. Methods. We examined the uptake of [3H]E217G by isolatedcanalicular membrane vesicles (CMVs) prepared from Sprague-Dawley (SD)rats and Eisai Hyperbilirubinemic rats (EHBR) whose canalicularmultispecific organic anion transporter/multidrug resistance associatedprotein 2 (cMOAT/MRP2) function is hereditarily defective. Also,in vivo biliary excretion of intravenously administered [3H]E217Gwas examined. Results. In CMVs prepared from SD rats, but not from EHBR, amarked ATP-dependent uptake of [3H]E217G was observed.Moreover, E217G competitively inhibited the ATP-dependent uptake of[3H]2,4-dinitrophenyl-S-glutathione (DNP-SG). In addition, nosignificant inhibitory effect of verapamil (100 M) and PSC-833 (5 M) onthe uptake of [3H]E217G was observed. In vivo, the biliary excretionof intravenously administered [3H]E217G was severely impaired inEHBR while the biliary excretion of [3H]E217G in SD rats wasreduced by administering a cholestatic dose (10 mol/kg) unlabeledE217G, but not by PSC-833 (3 mg/kg). Conclusions. The transport of E217G across the bile canalicularmembrane is predominantly mediated by cMOAT/MRP2.  相似文献   

17.
Summary The influence of ethanol on stimulation-evoked 3H-transmitter release was examined in slices of the rat brain cortex and corpus striatum preincubated with 3H-noradrenaline and 3H-choline, respectively. 3H-Transmitter release was stimulated by NMDA, l-glutamate, electrical impulses, reintroduction of Ca2+ ions (Ca2+-evoked release; after superfusion with Ca2+-free, K+-rich solution) or veratridine. In cortical slices preincubated with 3H-noradrenaline and superfused with Mg2+-free, otherwise physiologically composed salt solution, ethanol inhibited the NMDA- or l-glutamate-induced tritium overflow (IC50 45 and 37 mmol/l, respectively). In contrast, the tritium overflow in response to electrical stimulation, reintroduction of Ca2+ ions or veratridine was not affected by ethanol at concentrations up to 320 mmol/l; these experiments were carried out in cortical slices superfused with solution containing a physiological Mg2+ concentration. Ethanol also failed to inhibit Ca2+-evoked release in the absence of Mg2+ ions. In the presence of 1 mol/l veratridine, but not in its absence, NMDA induced tritium overflow even when cortical slices were superfused with salt solution containing a physiological Mg2+ concentration; again, ethanol inhibited this NMDA-evoked tritium overflow (IC50 73 mmol/l). In striatal slices preincubated with 3H-choline and superfused with Mg2+-free physiological salt solution, the NMDA-evoked tritium overflow was also, although at lower potency, inhibited by ethanol (IC50 192 mmol/l).In spite of the differences between the IC50 values of ethanol determined for the inhibition of cortical noradrenaline and striatal acetylcholine release, it may be concluded that the NMDA receptor-ion channel complex is one of the sites of action underlying the ethanol-induced inhibition of neurotransmitter release. Since in the brain cortex the NMDA-induced 3H-noradrenaline release appears to be mediated by an excitatory interneurone activated by NMDA, this neuronal system may be involved in the cortical actions of ethanol.  相似文献   

18.
The toxic effects of mono-n-butyl-tin-trichloride, mono-n-butyl-tin-tris-(2-ethyl-hexyl-mercaptoacetate), mono-n-butyl-tin acid and mono-n-butyl-thiotin acid on white mice were investigated. These compounds were administered to white mice by means of a stomach tube in a single dose of 4000 mg/ kg b.w. at the start of the experiment. All mice were sacrificed 24 hours after the administration.The clinical course as well as the macroscopic findings in all experimental groups indicated general signs of an acute intoxication. The histological findings in the mono-n-butyl-tin-trichloride group showed pronounced changes in the digestive tract, where haemorrhages in the mucous membrane and in the inner layer of the gastric and intestinal walls had been found. In the mice of the other experimental groups, steatosis of the hepatocytes and an irregular steatosis of the renal tubular epithelium were observed.  相似文献   

19.
Summary Uptake of 3H-NA was measured in hearts from genetically hypertensive and chemically sympathectomised rats. The endogenous cardiac NA content and NA uptake1 were depressed in genetically hypertensive animals, although NA uptake2 per heart was normal. After treatment of normal rats with 6-hydroxydopamine (chemical sympathectomy) endogenous cardiac NA, uptake1 and uptake2 were markedly lowered. Uptake2 inhibition by corticosterone varied in the two conditions tested, whereas no change in the potency of clonidine was detected in the genetically hypertensive rats.  相似文献   

20.
Summary 1. The 2-adrenoceptor agonist clonidine (0.03 and 0.1 ol/l) significantly inhibited stimulation-induced overflow of radioactivity from mouse isolated atria pre-incubated with [3H]-noradrenaline. This effect of clonidine was blocked by idazoxan (0.3 gmol/l) but not prazosin (0.3 ol/l), indicating that an 2-adrenoceptor was involved. 2. In some experiments mice were injected with pertussis toxin (1.5 g/mouse) 4 days before their atria were removed and subsequently incubated with [3H]-noradrenaline. Alternatively, isolated atria from untreated mice were suspended in Krebs-Henseleit solution, incubated for 16 h with pertussis toxin (1.0 and 4.0 g/ml) or vehicle and subsequently incubated with [3H]-noradrenaline. The effectiveness of pertussis toxin pretreatment was assessed indirectly using carbachol. Carbachol caused a dose dependent fall in both the rate and force of contraction of isolated, spontaneously beating atria from mice pretreated with vehicle in vivo or in vitro. This effect of carbachol was not seen in atria from mice pretreated with pertussis toxin in vivo or in vitro, suggesting that active toxin penetrated the myocardium. 3. Pertussis toxin pretreatment, either in vivo or in vitro did not alter the inhibitory effect of clonidine (0.03 and 0.1 gmol/l), or the facilitatory effect of the -adrenoceptor antagonist phentolamine (1.0 mol/l), on the stimulation-induced overflow of radioactivity. These results suggest that 2-adrenoceptor modulation of noradrenaline release from sympathetic nerve terminals is not dependent on an inhibitory guanine-nucleotide-binding protein. Send offprint requests to I. Musgrave  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号