首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We performed repeated analysis of mitochondrial respiratory function in skeletal muscle (SM) of patients with early-stage sporadic amyotrophic lateral sclerosis (SALS) to determine whether mitochondrial function was altered as the disease advanced. SM biopsies were obtained from 7 patients with newly diagnosed SALS, the same 7 patients 3 months later, and 7 sedentary controls. Muscle fibers were permeabilized with saponin, then skinned and placed in an oxygraphic chamber to measure basal and maximal adenosine diphosphate (ADP)-stimulated respiration rates and to assess mitochondrial regulation by ADP. We found that the maximal oxidative phosphorylation capacity of muscular mitochondria significantly increased, and muscular mitochondrial respiratory complex IV activity significantly decreased as the disease advanced. This temporal study demonstrates for the first time that mitochondrial function in SM in human SALS is progressively altered as the disease develops.  相似文献   

2.
BACKGROUND: Mitochondrial disorders are generally not associated with a clear phenotype-genotype relationship, which complicates the understanding of the disease and genetic counseling. OBJECTIVE: To investigate the relationship between the muscle and blood mitochondrial DNA mutation load and phenotype. DESIGN: Survey. SETTING: The Neuromuscular Research Unit, Rigshospitalet, Copenhagen, Denmark. PARTICIPANTS: Fifty-one persons with the 3243A>G point mutation of mitochondrial DNA, and 20 healthy control subjects. METHODS: We recorded the maximal oxygen uptake (Vo(2)max), maximal workload, resting and peak-exercise plasma lactate levels, muscle and blood mutation load, muscle morphology, and presence of diabetes mellitus and hearing impairment in all subjects. RESULTS: Muscle mutation load (mean +/- SE, 50% +/- 5%; range, 2%-95%) correlated with Vo(2)max and resting plasma lactate level (P<.001; R>/=0.64). All persons except 5 with a muscle mutation load above 50% had abnormal Vo(2)max and morphology on muscle biopsy findings. Persons with hearing impairment and diabetes mellitus had a muscle mutation load above 65%. The mutation load in blood (mean +/- SE, 18% +/- 3%; range, 0%-61%) did not correlate with Vo(2)max, resting plasma lactate levels, or presence of hearing impairment or diabetes mellitus. CONCLUSIONS: This study demonstrates a close relationship between the muscle mutation load and phenotype in persons carrying the 3243A>G mutation. The lack of correlation between the mutation load in blood and symptoms from other tissues emphasizes the importance of assessing phenotype-genotype correlations in the same tissue in mitochondrial disease. The results indicate that the threshold of muscle mutation load at which oxidative impairment occurs can be as low as 50%, which is as much as 40% lower than that suggested by in vitro studies.  相似文献   

3.
Introduction: Statins are associated with adverse skeletal muscle effects. Our objective was to determine if muscular adaptations following exercise training prevented deleterious effects of atorvastatin in glycolytic skeletal muscle. Methods: Twenty rats were divided into 2 groups: a control group (n = 10; Cont) and a 10 days of training group (n = 10; Training). Using the permeabilized fibers technique, we explored mitochondrial function. Results: Exercise training increased V(max) and H(2) O(2) production without altering the free radical leak, and mRNA expression of SOD2 and Cox1 were higher in trained muscle. In the Cont group, atorvastatin exposure increased H(2) O(2) production and decreased skeletal muscle V(max) . The decreased V(max) effect of atorvastatin was dose dependent. Interestingly, the half-maximal inhibitory concentration (IC(50) ) was higher in the Training group. H(2) O(2) production increased in trained muscle after atorvastatin exposure. Conclusions: These results suggest that improvements in mitochondrial respiratory and antioxidant capacities following endurance training protected mitochondria against statin exposure. Muscle Nerve 46: 367-373, 2012.  相似文献   

4.
Chinnery PF  Taylor DJ  Manners D  Styles P  Lodi R 《Neurology》2001,56(8):1101-1104
The authors studied the relationship between the percentage level of A3243G mitochondrial DNA mutation and the degree of mitochondrial dysfunction in vivo in nine individuals from four pedigrees using phosphorus MRS in muscle. There was no significant correlation between mutation load and maximum rate of adenosine triphosphate production (V(max)). V(max) was normal in a subject with 32% A3243G in muscle, which is in contrast with a previous observation of markedly reduced V(max) in a patient with only 6% A3243G in muscle. Factors besides mutation load, such as nuclear genes, influence expression of the A3243G mutation in vivo.  相似文献   

5.
The mdx mouse serves as animal model for Duchenne muscular dystrophy. Energy status in muscles of mdx mice is impaired and we have demonstrated recently that the energy precursor creatine exerts beneficial effects on mdx skeletal muscle cells in culture. Here we show that feeding a creatine-enriched diet to new-born mdx mice strongly reduced the first wave of muscle necrosis four weeks after birth. Necrosis of the fast-twitch muscle extensor digitorum longus was inhibited by 63+/-14% (P<0.0001) while necrosis of the slow-twitch soleus muscle was not significantly decreased. In addition, using chemically skinned muscle fibres, we found that mitochondrial respiration capacity was decreased by about 25% in mdx-derived fibres and that long-term creatine-feeding restored respiration to wild-type levels. These results provide evidence that creatine supplementation in mdx mice improves muscle health and may provide a scientific basis for its use as adjuvant therapy in Duchenne muscular dystrophy.  相似文献   

6.
The relationships between in vivo (31)P magnetic resonance spectroscopy (MRS) and in vitro markers of oxidative capacity (mitochondrial function) were determined in 27 women with varying levels of physical fitness. Following 90-s isometric plantar flexion exercises, calf muscle mitochondrial function was determined from the phosphocreatine (PCr) recovery time constant, the adenosine diphosphate (ADP) recovery time constant, the rate of change of PCr during the initial 14 s of recovery, and the apparent maximum rate of oxidative adenosine triphosphate (ATP) synthesis (Q(max)). Muscle fiber type distribution (I, IIa, IIx), citrate synthase (CS) activity, and cytochrome c oxidase (COX) activity were determined from a biopsy sample of lateral gastrocnemius. MRS markers of mitochondrial function correlated moderately (P < 0.05) with the percentage of type IIa oxidative fibers (r = 0.41 to 0.66) and CS activity (r = 0.48 to 0.64), but only weakly with COX activity (r = 0.03 to 0.26, P > 0.05). These results support the use of MRS to determine mitochondrial function in vivo.  相似文献   

7.
The purpose of this study was to investigate the correlation between the level of mutated mitochondrial DNA in muscle and oxidative capacity in 24 patients with mitochondrial myopathy (MM). Maximal oxygen uptake (VO(2max)), workload (W(max)), and venous plasma lactate levels were measured during an incremental cycle test to exhaustion in 17 patients with point mutations of mtDNA and in seven with single, large-scale deletions of mtDNA (chronic progressive external ophthalmoplegia [CPEO]). Results were compared with those in 25 healthy matched subjects. The mutation load in MM patients was 67 +/- 5% (range, 29 - 99%). VO(2max) and W(max) correlated with percentage of heteroplasmy (r > 0.82; p < 0.005) and were lower in patients versus healthy subjects (p < 0.000005). Exercise-induced peak increases in heart rate, ventilation, and resting plasma lactate levels correlated with muscle mutation load (r > 0.71; p < 0.005). Exercise-induced increases in plasma lactate correlated with muscle mutation load in CPEO patients (r = 0.95; p < 0.005). Impaired oxidative capacity and ragged red muscle fibers were found in CPEO and 3243A-->G patients with mutation loads as low as 45 and 57%, respectively. The study indicates that oxidative capacity correlates directly with skeletal muscle mutation load in MM patients, and that the mutation threshold level for impaired oxidative metabolism in MM patients is lower than found in in vitro studies.  相似文献   

8.
We examined mitochondrial oxidative function 5 minutes and 2 hours after a gradual asphyxial insult in newborn lambs. We subjected 16 ventilated newborn lambs to 75-90 minutes of hypoxia and hypercarbia that resulted in bradycardia and systemic hypotension over the final 15 minutes of the insult. At the end of asphyxia, the lambs were resuscitated and returned to control ventilator settings. Samples of brain were removed 5 minutes (n = 8) and 2 hours (n = 8) after asphyxia. Each group of eight lambs was subdivided into those less than 3 or greater than 3 days old to evaluate the effect of age on postasphyxia mitochondrial function. After classification into nonsynaptic and synaptic mitochondria, mitochondrial respiration (oxygen consumption) was measured using five different substrates. Data from asphyxiated lambs were compared with that from a control group of ventilated nonasphyxiated lambs (n = 8). In the lambs less than 3 days old, there was significant depression of mean +/- SEM nonsynaptic mitochondrial state 3 (adenosine diphosphate-dependent) respiration to 29.5 +/- 5.2% of control with four of the five substrates and of state 4 respiration to 33.7 +/- 0.9% of control with three of the five substrates 5 minutes after asphyxia. By 2 hours after asphyxia, mean +/- SEM nonsynaptic mitochondria state 3 respiration increased to 70.4 +/- 6.4% of control while state 4 respiration increased to 58.2 +/- 4.5% of control. In contrast, lambs greater than 3 days old exhibited no inhibition of nonsynaptic mitochondrial function after asphyxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of deep barbiturate anesthesia on brain glucose transport, TCA cycle flux, and aspartate, glutamate, and glutamine metabolism was assessed in the rat brain using 13C nuclear magnetic resonance spectroscopy at 9.4 T in conjunction with [1-13C] glucose infusions. Brain glucose concentrations were elevated, consistent with a twofold reduced cerebral metabolic rate for glucose (CMRglc) compared with light alpha-chloralose anesthesia. Using a mathematical model of neurotransmitter metabolism, several metabolic reaction rates were extracted from the rate of label incorporation. Total oxidative glucose metabolism, CMRglc(ox), was 0.33 +/- 0.03 micromol x g(-1) x min(-1). The neuronal TCA cycle rate was similar to that in the glia, 0.35 +/- 0.03 micromol x g(-1) x min(-1) and 0.26 +/- 0.06 micromol x g(-1) x min(-1), respectively, suggesting that neuronal energy metabolism was mainly affected. The rate of pyruvate carboxylation was 0.03 +/- 0.01 micromol x g(-1) x min(-1). The exchange rate between cytosolic glutamate and mitochondrial 2-oxoglutarate, Vx, was equal to the rate of neuronal pyruvate dehydrogenase flux. This indicates that Vx is coupled to CMRglc(ox), implying that the malate-aspartate shuttle is the major mechanism that facilitates label exchange across the inner mitochondrial membrane. The apparent rate of glutamatergic neurotransmission, V(NT), was 0.04 +/- 0.01 micromol x g x min, consistent with strong reductions in electrical activity. However, the rates of cerebral oxidative glucose metabolism and glutamatergic neurotransmission, CMRglc(ox)/V(NT), did not correlate with a 1:1 stoichiometry.  相似文献   

10.
We studied in vivo muscle energy metabolism in patients with Huntington's disease (HD) and dentatorubropallidoluysian atrophy (DRPLA) using 31P magnetic resonance spectroscopy (MRS). Twelve gene-positive HP patients (4 presymptomatic patients) and 2 gene-positive DRPLA patients (1 presymptomatic patient) were studied. 31P-MRS at rest showed a reduced phosphocreatine-to-inorganic phosphate ratio in the symptomatic HD patients and DRPLA patient. Muscle adenosine triphosphate/(phosphocreatine + inorganic phosphate) at rest was significantly reduced in both groups of symptomatic and presymptomatic HD subjects and was below the normal range in the 2 DRPLA subjects. During recovery from exercise, the maximum rate of mitochondrial adenosine triphosphate production was reduced by 44% in symptomatic HD patients and by 35% in presymptomatic HD carriers. The maximum rate of mitochondrial adenosine triphosphate production in muscle was also reduced by around 46% in the 2 DRPLA subjects. Our findings show that HD and DRPLA share a deficit of in vivo mitochondrial oxidative metabolism, supporting a role for mitochondrial dysfunction as a factor involved in the pathogenesis of these polyglutamine repeat-mediated neurodegenerative disorders. The identification of 31P-MRS abnormalities may offer a surrogate biochemical marker by which to study disease progression and the effects of treatment in HD and DRPLA.  相似文献   

11.
Muscle biopsy specimens were obtained from 48 human immunodeficiency virus-infected patients suffering from various neuromuscular symptoms. Microscopic examination by conventional and electron microscopy revealed a characteristic structural myopathy associated with mitochondrial changes in 13 patients, all of whom had received long-term zidovudine therapy. The mean cumulative dose they had received (498 +/- 145 gm) was significantly higher than that of the other 14 zidovudine recipients of the study. They suffered from a progressive, usually painful, proximal myopathy with pronounced wasting, normal-to-moderately elevated creatine kinase levels, and a myopathic electromyographic pattern. The condition usually improved after withdrawal of the drug. Assay of mitochondrial enzymes, including succinate-cytochrome c reductase, cytochrome c oxidase, and citrate synthase, showed a decline in respiratory chain capacity. Southern blot analysis of mitochondrial DNA showed no abnormality. It is likely that mitochondrial dysfunction, probably resulting from drug-induced inhibition of the mitochondrial DNA polymerase, is implicated in the pathogenesis of this complication of zidovudine therapy.  相似文献   

12.
Human platelets synthesize nitric oxide (NO) through an endothelial-type NO synthase (ecNOS) activated also by substances enhancing 3',5'-cyclic adenosine monophosphate (cAMP) concentrations, such as catecholamines, beta-adrenoceptor agonists and adenosine. To verify whether cAMP directly activates ecNOS through the cAMP-dependent protein kinase A (PKA), we evaluated (i) the influence of 8-Br-cAMP, adenosine and forskolin on ecNOS activity and phosphorylation at Ser(1177) and (ii) the effect of PKA inhibition on ecNOS activity. Platelets from 10 healthy male volunteers were used for aggregation studies and measurement of NOS activity (conversion of L-[(3)H]-arginine to L-[(3)H]-citrulline) following exposure to 8-Br-cAMP, adenosine and forskolin, both in the absence and in the presence of the PKA inhibitor Rp-cAMPS (100 micromol/l). The phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein (VASP) at Ser(157) and Ser(239) and of ecNOS at Ser(1177) was evaluated by Western blot. NOS activity (pmol L-citrulline/10(8) platelets) increased from 0.090+/-0.002 to 0.148+/-0.013 with 500 micromol/l 8-Br-cAMP (p<0.0001), to 0.140+/-0.008 with 30 micromol/l adenosine (p<0.0001) and to 0.140+/-0.009 with 10 micromol/l forskolin (p<0.0001). Rp-cAMPS decreased baseline NOS activity from 0.093+/-0.001 to 0.075+/-0.006 (p<0.02) and prevented the stimulation by 8-Br-cAMP, adenosine and forskolin. Platelet exposure to 8-Br-cAMP and forskolin, beside the phosphorylation of the specific PKA substrate VASP, markedly increased the expression of ecNOS protein phosphorylated at Ser(1177). The study shows that NOS activity of human platelets is increased by the cAMP/PKA pathway which is involved in NO synthesis induced by adenosine, forskolin and potentially by every antiaggregating substance enhancing intraplatelet cAMP via receptor-dependent and -independent mechanisms.  相似文献   

13.
We studied exercise-induced changes in the adenosine triphosphate (ATP), phosphocreatine (PCr), and lactate levels in the skeletal muscle of mitochondrial patients and patients with McArdle's disease. Needle muscle biopsy specimens for biochemical measurement were obtained before and immediately after maximal short-term bicycle exercise test from 12 patients suffering from autosomal dominant and recessive forms of progressive external ophthalmoplegia and multiple deletions of mitochondrial DNA (adPEO, arPEO, respectively), five patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) 3243 A-->G point mutation, and four patients with McArdle's disease. Muscle ATP and PCr levels at rest or after exercise did not differ significantly from those of the controls in any patient group. In patients with mitochondrial disease, muscle lactate tended to be lower at rest and increase more during exercise than in controls, the most remarkable rise being measured in patients with adPEO with generalized muscle symptoms and in patients with MELAS point mutation. In McArdle patients, the muscle lactate level decreased during exercise. No correlation was found between the muscle ATP and PCr levels and the respiratory chain enzyme activity.  相似文献   

14.
Chronic cerebrovascular disorders are often complicated by additional temporary ischaemic insults, resulting in substantial deterioration of brain energy metabolism. In the present study, chronic limitations of oxygen supply were induced in Wistar rats by 2 weeks of permanent bilateral common carotid artery occlusion (2-vo) to initiate a 'preconditioning-like' effect that protects rat brain energy metabolism against further acute systemic hypotension (15 min). Haemodynamic parameters, arterial blood gases and body temperature were monitored. Energy metabolites were determined in rat parietotemporal cerebral cortex: adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), phosphocreatine (PCr), and adenosine by the high-pressure liquid chromatography (HPLC) technique and lactate spectrophotometrically. After 2 weeks, permanent 2-vo led to a significant decrease in the concentrations of cortical tissue ATP and PCr, from 3.06+/-0.48 to 2. 09+/-0.28 and from 4.27+/-0.63 to 3.35+/-0.41 micromol/g, respectively. These changes were associated with a two-fold increase in AMP and adenosine. Acute systemic hypotension alone (non-preconditioning) reduced ATP and PCr drastically, to 0.97+/-0. 51 and 1.76+/-1.23 micromol/g. Tissue concentrations of lactate, AMP, and adenosine were markedly increased, three- to five-fold, in 'non-preconditioned' brain tissue. In contrast, after 2 weeks of 2-vo acute hypotension did not significantly alter the cortical energy state any further. The effects of preconditioning on tissue ATP and PCr were most pronounced at 5 min and 48 h after reperfusion. In conclusion, permanent 2-vo seems to activate compensatory mechanisms, which effectively protect the rat's cortical energy metabolism against an additional ischaemic attack ('preconditioning-like' effect).  相似文献   

15.
Magnetic stimulation of the femoral nerve has been shown to evoke maximal quadriceps twitch contraction (TwQ(max)). Its measurement as a nonvolitional index of muscle strength has been proposed as a means to follow the disability of patients with neuromuscular disorders or peripheral muscle weakness. The aim of the present study was to investigate TwQ(max) sensitivity to interventions known to develop peripheral muscle strength. We thus measured changes in TwQ(max) after a short-duration resistance training program, examining its reproducibility and comparing its changes with other indices of muscle strength, such as maximal voluntary contraction (MVC) and one-repetition maximum (1-RM). In 23 subjects, TwQ(max)was measured on two occasions. High within- and between-session intraclass coefficients of correlation were observed (r > 0.99). Within-session and between-session differences in TwQ(max)were low (2.2 +/- 1% and 5.4 +/- 2%, respectively). Eight subjects subsequently participated in a resistance training program of the knee extensors, 3 days per week for 8 weeks. TwQ(max) and 1-RM increased significantly after training (10.9 +/- 3.7 vs. 12.3 +/- 4.4 kg, P < 0.04; and 45 +/- 13 vs. 55 +/- 12 kg, P < 0.001, respectively), whereas the MVC increase did not reach significance (41.9 +/- 16 kg vs. 42.3 +/- 15 kg, P = 0.25). Responses to magnetic stimulation of the femoral nerve are highly reproducible and sensitive enough to detect improvement in muscle contractile mechanisms after resistance training in healthy subjects. Patient cooperation is not required, which may be an advantage in clinical situations.  相似文献   

16.
Muscle biopsy specimens from three patients with an autosomal dominant myopathy and tubular aggregates in both type 1 and type 2 fibers were investigated for immunofluorescent staining with antibodies to sarcoplasmic reticulum (SR) Ca-pump protein and calsequestrin and for Ca2+ loading ability. The results show that type 1 and type 2 fibers are differentially reactive to anti-Ca-pump protein IgG and similarly reactive with affinity-purified antibody to calsequestrin, which is in agreement with earlier observations in rat skeletal muscle. Tubular aggregates, which are shown to be highly reactive with either kind of antibody, appear to be sites of calcium accumulation for oxalate-facilitated adenosine triphosphate (ATP) dependent Ca uptake by chemically skinned fibers and thereby increase markedly the Ca loading capacity of the affected fibers.  相似文献   

17.
OBJECTIVE: A mitochondrial disease might be considered when depressive disorder is associated with diabetes mellitus or other symptoms commonly found in mitochondrial disease. Scattered regional cerebral blood flow (rCBF) decreases and increases have been reported in depressive and mitochondrial disorders. A 61-year-old male patient with early adult onset of depressive disorder and a slowly developing multiorgan syndrome including diabetes mellitus was investigated. METHOD: 99mTc-HMPAO rCBF SPECT and muscle biopsy to assess mitochondrial functions were performed in the patient. RESULTS: Alterations of rCBF were found in the patient, with the most pronounced decreases in the left dorsolateral frontal and inferior parietal lobes, and the most pronounced increases in the bilateral superior parietal lobes. Muscle biopsy revealed myopathy and decrease of mitochondrial adenosine triphosphate production rates (MAPRs). CONCLUSION: The MAPRs decreases support the suspicion of mitochondrial dysfunction in the patient. A subgroup of depressed patients may have mitochondrial dysfunctions.  相似文献   

18.
We studied brain and muscle energy metabolism by phosphorus 31 magnetic resonance spectroscopy (31P-MRS) in 12 patients affected by migraine with aura (classic migraine) in interictal periods. Brain 31P-MRS disclosed a low phosphocreatine content in all patients, accompanied by high adenosine diphosphate concentration, a high percentage of V/Vmax (adenosine triphosphate), and a low phosphorylation potential--features showing an unstable state of metabolism in classic migraine. Abnormal muscle mitochondrial function, in the absence of clinical signs of muscle impairment, was present in nine of the 12 patients examined.  相似文献   

19.
It is not known what causes the well-established inverse relationship between whole-body exercise economy and exercise intensity. The purpose of this study was to: (1) evaluate muscle exercise economy at 45%, 70%, and maximum isometric strength using 31P magnetic resonance spectroscopy (31P-MRS); and (2) determine the relationship between percent type II muscle fiber cross-section, whole-body exercise economy, and muscle exercise economy. Subjects included 32 premenopausal women. Muscle exercise economy was significantly different across the three exercise intensities (28.1 +/- 10.4, 24.8 +/- 8.2, and 20.2 +/- 7.5 N/cm2. mmol/L adenosine triphosphate [ATP] for the 45%, 70%, and maximum intensities, respectively). Percent type II muscle area was significantly related to whole-body metabolic economy during activities of daily living (r = -0.68) and 31P-MRS muscle metabolic economy during isometric plantar flexion (r = -0.53). These data suggest that skeletal muscle becomes less economical as force production increases, and that these decreases in metabolic economy may be related to increased dependence on inefficient type II muscle.  相似文献   

20.
Sporadic amyotrophic lateral sclerosis (SALS) causes progressive muscle weakness because of the loss of motor neurons. SALS has been associated with exposure to environmental toxins, including pesticides and chemical warfare agents, many of which are organophosphates. The enzyme paraoxonase 1 (PON1) detoxifies organophosphates and the efficacy of this enzyme varies with polymorphisms in the PON1 gene. To determine if an impaired ability to break down organophosphates underlies some cases of SALS, we compared the frequencies of PON1 polymorphisms in SALS patients and controls and investigated gene-environment interactions with self-reported pesticide/herbicide exposure. The PON1 coding polymorphisms L55M, Q192R and I102V, and the promoter polymorphisms -909c>g, -832g>a, -162g>a and -108c>t, were genotyped in 143 SALS patients and 143 matched controls. Statistical comparisons were carried out at allele, genotype and haplotype levels. The PON1 promoter allele -108t, which reduces PON1 expression, was strongly associated with SALS. Overall, promoter haplotypes that decrease PON1 expression were associated with SALS, whereas haplotypes that increase expression were associated with controls. Coding polymorphisms did not correlate with SALS. Gene-environment interactions were identified at the allele level for some promoter SNPs and pesticide/herbicide exposure, but not at the genotype or haplotype level. In conclusion, some PON1 promoter polymorphisms may predispose to SALS, possibly by making motor neurons more susceptible to organophosphate-containing toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号