首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial DNA (mtDNA) haplogroup typing has become an essential tool to study human evolutionary history and to infer the matrilineal bio-geographic ancestry. In forensic field, the screening of mtDNA haplogroups by genotyping of mtDNA single nucleotide polymorphisms (SNPs) can help guarantee the quality of mtDNA sequence data as well as can reduce the need to sequence samples that do not match. Here, a multiplex mutagenically separated (MS) polymerase chain reaction (PCR) system was developed for simultaneous rapid detection of 14 coding region SNPs and one deletion motif representing common mtDNA haplogroups of East Asia. The multiplex MS PCR system we developed has the advantage of being a one step procedure that requires only a single PCR amplification with allele-specific primers and allowing straightforward designation of haplogroups along the branches of the phylogenetic tree. Therefore, it would be a simple, rapid, and reliable detection method useful for large-scale screening of mtDNA variations to determine East Asian mtDNA haplogroups.  相似文献   

2.
The Scientific Working Group on DNA Analysis Methods (SWGDAM) mitochondrial DNA (mtDNA) population data set is used to infer the relative rarity of mtDNA profiles obtained from evidence samples and of profiles used to identify missing persons. In this study, the East Asian haplogroup patterns in the SWGDAM data sets were analyzed in a phylogenetic context to determine relevant single nucleotide polymorphisms (SNPs) and to describe haplogroup distributions for Asians (n = 753; with a breakdown of individuals from China n = 356, Korea n = 182, Japan n = 163, and Thailand n = 52). We focus on the patterns observed in the SWGDAM Chinese data set and refer to interesting differences in the smaller subgroup data sets for the other East Asian populations (Japanese, Korean, and Thai). A total of 218 SNPs were observed in the data set, including 37 observed positions not previously reported. In the largest of the East Asian SWGDAM data sets (Chinese), these SNPs ranged from having 1 to 29 changes in the phylogenetic tree, with site 16519 being the most variable. On average there were 4.5 changes for a character on the tree. The most variable sites (with 14 or more changes each listed from fastest to slowest) observed were 16519 (L = 29), 16311 (L = 27), 152 (L = 24), 146 (L = 21), 16172 (L = 17), 16189 (L = 17), 195 (L = 16), 16362 (L = 15), 16093 (L = 14), 16129 (L = 14) and 150 (L = 14). These rapidly changing sites are consistent with other published analyses. Only 28 SNPs are needed to identify all clusters containing 1% (n = 7) or more individuals in the East Asian data set. All 36 haplogroups previously observed in East Asian populations were also seen in the SWGDAM data sets and include: A, B, B4, B4a, B4b, B5a, B5b, C, D, D4, D4a, D4b, D5, D5a, F, F1, F1a, F1b, F1c, F2a, G2, G2a, M, M7a1, M7b, M7b1, M7b2, M7c, M8a, M9, M10, N9a, R, R9a, Y, and Z. Haplogroups A, B4a, D4, and F1a were the most commonly observed clusters in the Chinese data set (the largest of the data sets) with each of these occurring in more than 6% of the samples in the data set. The next most common haplogroups in the Chinese data set include the clusters C, M7b1, and N9a with each observed at frequencies greater than or equal to 4%. European Caucasian, and African haplogroups were rarely observed within the East Asian data sets. The various analyses revealed that the data set was similar to published East Asian data sets such as those from Han Chinese.  相似文献   

3.
Mitochondrial DNA (mtDNA) U/K and J/T are sister haplogroups within the superhaplogroup R. They are both common in Europe, with a combined overall frequency similar to the one reported for H, the most common European haplogroup (40–50%). In this study, we selected 159 Italian subjects, already ascribed to U/K and J/T by RFLP typing, and assigned each mtDNA to specific clades/subclades by investigating at least one diagnostic coding region SNP. For each sister haplogroup, one multiplex PCR and one SNaPshot minisequencing reaction were set up targeting 16 U/K and 7 J/T coding region SNPs. Each mtDNA sample was clearly assigned to a specific subclade, which could be further subdivided into several minor sub-branches according to peculiar HVS I/II motifs.Such a molecular dissection of haplogroups U/K and J/T could be extremely useful to reduce the overall analysis time and labor intensive sequencing procedures in high volume forensic casework, for example when it is important to rapidly exclude samples in order to restrict the number of suspects.  相似文献   

4.
Mitochondrial haplogroup information can be useful in forensic contexts that rely primarily on mitochondrial DNA (mtDNA) testing, which often involve limited or degraded DNA. Due to the phylogeographic patterning of mtDNA in human populations, mitochondrial haplogroups are indicative of maternal ancestry (as mtDNA is a maternally inherited marker). In certain circumstances, maternal ancestry inferred from mitochondrial haplogrouping could be beneficial to forensic investigations. For example, ancestry information could assist in the identification of unknown service members from past conflicts, such as the World War II Battle of Tarawa involving American and Japanese forces. In this context, it could be useful to distinguish Native American mtDNA from Asian mtDNA to bolster the anthropological and circumstantial evidence leading to an identification or foreign national determination. Although most of the founding Native American haplogroups contain diagnostic variants in the mitochondrial control region (CR), haplogroup B2 does not, and this makes it more difficult to distinguish B2 from the parental B4 and closely related B4b haplogroups found in Asia. In this paper, the amount of mtDNA information required to distinguish Native American haplotypes from Asian haplotypes within haplogroup B was examined. Fifty-six samples belonging to subtypes of B2 and B4 were sequenced for the entire mitogenome. Haplogroups were estimated from three ranges of mitochondrial DNA (HV1 and 2, CR, and full mitogenome). Half of the samples could not be precisely haplogrouped without full mitogenome data, although enough variants were often provided to make an accurate B2 versus B4 distinction. Native American B2 haplotypes were distinguishable using CR data alone in 82% of samples, though the remaining samples required full mitogenome data for haplogroup B2 designation. The use of full mitogenome data consistently enables accurate haplogroup determination, and opens the possibility for gaining information on maternal ancestry.  相似文献   

5.
Recent progress in mitochondrial DNA analysis   总被引:1,自引:0,他引:1  
In this review, we describe the current state of knowledge of mitochondrial genetics of East Asian populations and its application to forensic science. Recent advances in mitochondrial DNA (mtDNA) phylogeny have identified haplogroup-specific single nucleotide polymorphisms (SNPs) and the control region motifs of haplogroups. By analyzing haplogroup-specific SNPs, we can rapidly and accurately connect the mtDNA under study to the relevant haplogroup. Haplogroups are fairly continent- and/or region-specific; therefore, we can infer the ethnic background of that mtDNA. In addition, errors in hypervariable region sequences can be detected by means of haplogroup motif analysis.  相似文献   

6.
We performed a molecular characterization of Korean Y-chromosomal haplogroups using a combination of Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and Y-chromosomal short tandem repeats (Y-STRs). In a test using DNA samples from 706 Korean males, a total of 19 different haplogroups were identified by 26 Y-SNPs including the newly redefined markers (PK4, KL2, and P164) in haplogroup O. When genotyping the SNPs, phylogenetic nonequivalence was found between SNPs M117 and M133, which define haplogroup O3a3c1 (O3a2c1a according to the updated tree of haplogroup O by Yan et al. (European Journal of Human Genetics 19:1013-1015, 2011)), suggesting that the position of the M133 marker should be corrected. We have shown that the haplotypes consisted of DYS392, DYS393, DYS437, DYS438, DYS448, and DYS388 loci, which exhibit a relatively lower mutation rate, can preserve phylogenetic information and hence can be used to roughly distinguish Y-chromosome haplogroups, whereas more rapidly mutating Y-STRs such as DYS449 and DYS458 are useful for differentiating male lineages. However, at the relatively rapidly mutating DYS447, DYS449, DYS458, and DYS464 loci, unusually short alleles and intermediate alleles with common sequence structures are informative for elucidating the substructure within the context of a particular haplogroup. In addition, some deletion mutations in the DYS385 flanking region and the null allele at DYS448 were associated with a single haplogroup background. These high-resolution haplogroup and haplotype data will improve our understanding of regional Y-chromosome variation or recent migration routes and will also help to infer haplogroup background or common ancestry.  相似文献   

7.
Four multiplex PCR systems followed by single base extension reactions were developed to score 22 single nucleotide polymorphisms (SNPs) and identify the most frequent East Asian Y chromosome haplogroups. Select Y chromosome SNPs allowed hierarchical testing for almost all of the major East Asian haplogroups along the revised Y chromosome tree. The first multiplex consists of six SNPs defining world-wide major haplogroups (M145, RPS4Y711, M89, M9, M214, and M175). The second multiplex includes six SNPs of subhaplogroup O (M119, P31, M95, SRY465, 47z, and M122). The third multiplex contains six SNPs that subdivide the subhaplogroup O3 (M324, P201, M159, M7, M134, and M133). The fourth multiplex comprises four SNPs of subhaplogroup C (M217, M48, M407, and P53.1). The sizes of the PCR amplicons ranged from 70 to 100 bp to facilitate their application to degraded forensic and ancient samples. Validation experiments demonstrated that the multiplexes were optimized for analysis of low template DNA and highly degraded DNA. In a test using DNA samples from 300 Korean males, 16 different Y chromosome haplogroups were identified; haplogroup O2b* was the most frequently observed (29.3%), followed by haplogroups C3 (xC3c, C3d, C3e) (16.0%) and O3a3c1 (11.0%). These multiplex sets will be useful tools for Y-chromosomal haplogroup determination in anthropological and forensic studies of East Asian populations.  相似文献   

8.
Sequence analysis of the hypervariable regions (HVRs) of mitochondrial DNA (mtDNA) are routinely performed in forensic casework, however, there are still issues to be resolved, such as the existence of multiple errors in published databases or the limitations of individual discrimination in certain populations. Here, we analyzed the coding region of mtDNA in detail by examining 36 haplogroup (HG)-defining single nucleotide polymorphisms (SNPs) using amplified product-length polymorphisms (APLP) method in conjunction with sequence analysis of HVR1 and HVR2 to establish a methodology for forensically reliable and practical mtDNA testing. The mtDNAs from 217 unrelated Japanese were examined and could be classified into 27 haplogroups. By combining the data of the coding region with those of HVRs, genetic diversity was slightly increased from 0.9817 to 0.9888 for HVR1/HG and from 0.9967 to 0.9970 for HVR1/HVR2/HG, as compared to the results of HVRs only. Moreover, in most cases, reliability of the HVR data could be confirmed by haplogroup motif analysis. Our mtDNA profiling method can provide reliable data in a time and cost-saving way due to the rapid and economical nature of APLP analysis.  相似文献   

9.
A collaborative European DNA Profiling (EDNAP) Group exercise was undertaken to assess the performance of an earlier described SNaPshot™-based screening assay (denoted mini-mtSNaPshot) (Weiler et al., 2016) [1] that targets 18 single nucleotide polymorphism (SNP) positions in the mitochondrial (mt) DNA control region and allows for discrimination of major European mtDNA haplogroups. Besides the organising laboratory, 14 forensic genetics laboratories were involved in the analysis of 13 samples, which were centrally prepared and thoroughly tested prior to shipment. The samples had a variable complexity and comprised straightforward single-source samples, samples with dropout or altered peak sizing, a point heteroplasmy and two-component mixtures resulting in one to five bi-allelic calls. The overall success rate in obtaining useful results was high (97.6%) given that some of the participating laboratories had no previous experience with the typing technology and/or mtDNA analysis. The majority of the participants proceeded to haplotype inference to assess the feasibility of assigning a haplogroup and checking phylogenetic consistency when only 18 SNPs are typed. To mimic casework procedures, the participants compared the SNP typing data of all 13 samples to a set of eight mtDNA reference profiles that were described according to standard nomenclature (Parson et al., 2014) [2], and indicated whether these references matched each sample or not. Incorrect scorings were obtained for 2% of the comparisons and derived from a subset of the participants, indicating a need for training and guidelines regarding mini-mtSNaPshot data interpretation.  相似文献   

10.
The aim of the present work was to study the origin of paternal and maternal lineages in Guinea-Bissau population, inferred by phylogeographic analyses of mtDNA and Y chromosome defined haplogroups. To determine the male lineages present in Guinea-Bissau, 33 unrelated males were typed using a PCR-SNaPshot multiplex based method including 24 Y-SNPs, which characterize the main haplogroups in sub-Saharan Africa and Western Europe. In the same samples, 17 Y-STRs (included in the YFiler kit, Applied Biosystems) were additionally typed. The most frequent lineages observed were E1b1a (xE1b1a4,7)-M2 (68%) and E1a-M33 (15%). The European haplogroup R1b1-P25 was represented with a frequency of 12%. The two hypervariable mtDNA regions were sequenced in 79 unrelated individuals from Guinea-Bissau, and haplogroups were classified based on control region motifs using mtDNA manager. A high diversity of haplogroups was determined in our sample being the most frequent haplogroups characteristic of populations from sub-Saharan Africa, namely L2a1 (15%), L3d (13%), L2c (9%), L3e4 (9%), L0a1 (8%), L1b (6%) and L1c1 (6%). None of the typical European haplogroups (H, J and T) were found in the present sample of Guinea-Bissau. From our results, it is possible to confirm that Guinea-Bissau presents a typically West African profile, marked by a high frequency of the Y chromosome haplogroup E1b1a(xE1b1a4,7)-M2 and a high proportion of mtDNA lineages belonging to the sub-Saharan specific sub-clusters L1 to L3 (89%). A small European influx has been also detected, although restricted to the male lineages.  相似文献   

11.
Studying the Y chromosomes of indigenous tribes of Ecuador revealed a lack of strategic SNP assays to examine the substructure of South American native populations. In most studies dealing with South American samples so far only the most common Y-SNP M3 of haplogroup Q was analyzed, because this is known to define a founder group in South America. Studies of SNPs ancestral to Q-M3 (Q1a3a) to confirm the results or the typing of Q subclades have often been neglected. For this reason we developed a SNaPshot assay, which allows first for a hierarchical testing of all main haplogroups occurring in South American populations and second for a detailed analysis of haplogroups Q and C thought having ancient Asian descent. We selected 16 SNPs from the YCC haplogroup tree and established two multiplexes. The first multiplex ("SA Major") includes 12 Y-SNPs defining the most frequent haplogroups occurring in South America (M42, M207, M242, M168, M3, M145, M174, M213, RPS4Y711, M45, P170, and M9). The second multiplex ("SA SpecQ") contains Y-SNPs of haplogroup Q, especially of the subclade Q-M3 (M19, M194, P292, M3, and M199). Within our Ecuadorian sample, haplogroup Q-M3 (xM19, M194, P292, and M199) was predominant, but we also found haplogroup E and R, which can be attributed to recent admixture. Moreover, we found four out of 65 samples, which were tested to be haplogroup C3* (C-M217) the modal haplogroup in Mongolians and widespread in indigenous populations of the Russian Far East as well as in Eastern Asia. This haplogroup is not known to be the result of recent admixture and has been found only one time before in South America. Since haplogroup C occurs in Asia and in North America (C3b or C-P39), we assume that these C-lineages are ancient as well. Therefore, we established a third multiplex ("SA SpecC"), which allows the further subtyping of haplogroup C, mainly of subclade C3 defined by the Y-SNP M217 (M407, M48, P53.1, M217, P62, RPS4Y711, M93, M86, and P39). Altogether, these three multiplexes cover the most frequent haplogroups in South America and allow for a maximal resolution of the Y-chromosomal SNP diversity in Amerindian population samples.  相似文献   

12.
Sequence analysis of the DNA fragments amplified with the DYS391, DYS437 and DYS438 primers allowed the detection of biallelic polymorphisms in the flanking region of these STR loci. In this work, we describe a methodology where both the STR alleles and the SNPs at these loci are typed. Sequencing of chimpanzee (Pan troglodytes) homologous loci was performed and the ancestral state of the SNPs was determined. The allele distribution of these biallelic markers was analysed within different haplogroups. For DYS391, allele 1 was found in all samples from haplogroups E3a and E* (xE3a). DYS437 allele 1 was present in all haplogroup E3a samples and absent in the haplogroup E* (xE3a). The presence of allele 1 of DYS438 was restricted to haplogroup J. The SNP typing can be helpful in distinguishing STR haplotype identity by descent from identity by state, thus proving to be very informative in forensic investigations.  相似文献   

13.
As a contribution to the geographic coverage of EMPOP, currently the best available forensic mitochondrial DNA (mtDNA) database, a total of 299 Swedish individuals were analysed by sequencing of the first and second hypervariable regions of the mtDNA genome. In this sample set, a total of 179 different haplotypes were detected. The genetic diversity was estimated to be 0.9895 (±0.0023), and the random match probability was 1.39 %. The most abundant haplogroups were HV (including its subhaplogroups H and V) with a frequency of 46.5 %, followed by haplogroup U (including its subhaplogroup K) at 27.8 %, haplogroup T at 10.0 % and haplogroup J at 7.0 %, a distribution that is consistent with previous observations in other European populations.  相似文献   

14.
We have developed a multiplex mitochondrial (mtDNA) assay of 21 coding region single nucleotide polymorphisms (SNPs) and one control region SNP outside hypervariable region 1 (HVR1) and hypervariable region 2 (HVR2) that can be amplified in a single reverse touchdown polymerase chain reaction. Single base extension using the SNaPshot technique is also carried out as one multiplex. Besides the nine major European haplogroups (i.e. H, I, J, K, T, U, V, W, and X), 16 additional subclades (i.e. N1, X2, X2b, U2′-4/7′-9′, J/T, J1, J1c, HV, H1, H1a1, H1c, H3, H4, H6a, H7a H10) can be detected and classified into a phylogenetic mtDNA tree. By analyzing 130 Caucasoid samples from Germany, 36 different haplotypes were found resulting in a power of discrimination of 93.2%. Although 49% of all samples belonged to superhaplogroup H, the most common haplotype, i.e., haplogroup-specific SNPs plus haplogroup unspecific SNPs, had a frequency of only 18%. This assay is applicable for high-throughput mtDNA analysis and forensic mass screening. It will give additional information to the common control region sequencing of HVR1 and HVR2. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.

The Y chromosome behaves as a single locus. Its genetic information is useful in forensic casework, deficiency kinship testing, and population genetics studies. Continuous increases of loci number within commercial kits forced modification of worldwide reference databases. In Pan American countries, like Argentina, diverse parental ethnic groups contributed to the extant admixed urban populations. We report 509 additional haplotypes of 23 Y-STRs from donors inhabiting urban areas of six Argentinean provinces: Buenos Aires, Santiago del Estero, Santa Cruz, Rio Negro, Santa Fe, and Formosa. To better understand the demographic landscape of the admixed urban paternal lineages, structural analysis was performed using published data from other Argentinean provinces. AMOVA by Rst distance and inferred haplogroups by two predictive online software methods based on haplotypes yielded complementary results with respect to detected population structure, probably due to the different proportions of the Native American Q3-M3 haplogroup in the studied samples. This situation, which is common to most North, Meso, and South American countries, underscores the need for the additional step of typing specific SNPs for haplogroup diagnosis. We propose organizing Y-STR haplotype reference databases according to the most frequent haplogroups detected in a given admixed population.

  相似文献   

16.
In 1998, a Viking Age mass grave was discovered and excavated at St. Laurence´s churchyard in Sigtuna, Sweden. The excavated bones underwent osteoarchaeological analysis and were assigned to at least 19 individuals. Eleven skeletons showed sharp force trauma from bladed weapons. Mass graves are an unusual finding from this time period, making the burial context extraordinary. To investigate a possible maternal kinship among the individuals, bones and teeth from the skeletal remains were selected for mitochondrial DNA (mtDNA) analysis. Sanger sequencing of short stretches of the hypervariable segments I and II (HVS-I and HVS-II) was performed. A subset of the samples was also analysed by massively parallel sequencing analysis (MPS) of the entire mtDNA genome using the Precision ID mtDNA Whole Genome Panel. A total of 15 unique and three shared mtDNA profiles were obtained. Based on a combination of genetic and archaeological data, we conclude that a minimum of 20 individuals was buried in the mass grave. The majority of the individuals were not maternally related. However, two possible pairs of siblings or mother-child relationships were identified. All individuals were assigned to West Eurasian haplogroups, with a predominance of haplogroup H. Although the remains showed an advanced level of DNA degradation, the combined use of Sanger sequencing and MPS with the Precision ID mtDNA Whole Genome Panel revealed at least partial mtDNA data for all samples.  相似文献   

17.
Y haplogroups, defined by Y-SNPs, allow the reconstruction of the human Y chromosome genealogy, which is important for population, evolutionary and forensic genetics. In this study, Y-SNPs were typed and haplogroups inferred with the MPS Ion AmpliSeq™ HID Y-SNP Research Panel v1, as a high-throughput approach. Firstly, the performance of the panel was evaluated with different DNA input amounts, reagent volumes and cycle numbers. DNA-inputs from 0.5 to 1 ng generated the most balanced read depth. Combined with full reagent and 19 cycles, this offered the highest number of amplicons with a sequencing read depth of at least 20 reads. Secondly, the sub-haplogroups of 182 admixed South Americans and Greenlanders belonging to haplogroup Q were inferred and tested for potential improvement in resolution. Most samples were assigned to lineage Q-M3 with some samples assigned to lineages upstream (Q-M346, L56, L57; Q-L331, L53; Q-L54; Q-CTS11969, CTS11970) or parallel (Q-L330, L334; Q-Z780/M971) to Q-M3. Only one sample was assigned to a downstream lineage (Q-Z35615, Z35616). Most individuals of haplogroup Q with NAM ancestry could neither be distinguished from each other, nor from half of the Greenlandic samples. Typing additional, known SNPs within lineage Q-M3, Z19483 and SA05, increased the resolution of predicted haplogroups. The search for novel variants in the sequenced regions allowed the detection of 42 variants and the subdivision of lineage Q-M3 into new subclades. The variants found in six of these subclades were exclusive to certain South American countries. In light of the limited differentiation of haplogroup Q samples, the additional information on known or novel SNPs disclosed in this study when using MPS Ion AmpliSeq™ HID Y-SNP Research Panel v1 should be included in the Yleaf software, to increase the differentiation of lineage Q-M3.  相似文献   

18.
We have developed a single PCR multiplex SNaPshot reaction that consists of 32 coding region SNPs that allows (i) increasing the discrimination power of the mitochondrial DNA (mtDNA) typing in forensic casework, and (ii) haplogroup assignments of mtDNA profiles in both human population studies (e.g. anthropological) and medical research. The selected SNPs target the East Asian phylogeny, including its Native American derived branches. We have validated this multiplex assay by genotyping a sample of East Asians (Taiwanese) and Native Americans (Argentineans). In addition to the coding SNP typing, we have sequenced the complete control region for the same samples. The genotyping results (control region plus SNaPshot profiles) are in good agreement with previous human population genetic studies (based on e.g. complete sequencing) and the known mtDNA phylogeny. We observe that the SNaPshot method is reliable, rapid, and cost effective in comparison with other techniques of multiplex SNP genotyping. We discuss the advantages of our SNP genotyping selection with respect to previous attempts, and we highlight the importance of using the known mtDNA phylogeny as a framework for SNP profile interpretation and as a tool to minimize genotyping errors.  相似文献   

19.
Brazilian population derives from Native Amerindians, Europeans, and Africans. Southeastern Brazil is the most populous region of the country. The present study intended to characterize the maternal genetic ancestry of 290 individuals from southeastern (Brazil) population. Thus, we made the sequencing of the three hypervariable regions (HV1, HV2, and HV3) of the mitochondrial DNA (mtDNA). The statistical analyses were made using Arlequin software, and the median-joining haplotype networks were generated using Network software. The analysis of three hypervariable regios showed 230 (79.3 %) unique haplotypes and the most common haplotype was “263G” carried by 12 (4.1 %) individuals. The strikingly high variability generated by intense gene flow is mirrored in a high sequence diversity (0.9966?±?0.0010), and the probability of two random individuals showing identical mtDNA haplotypes were 0.0068. The analysis of haplogroup distribution revealed that 36.9 % (n?=?107) presented Amerindian haplogroups, 35.2 % (n?=?102) presented African haplogroups, 27.6 % (n?=?80) presented European haplogroups, and one (0.3 %) individual presented East Asian haplogroup, evidencing that the southeastern population is extremely heterogeneous and the coexistence of matrilineal lineages with three different phylogeographic origins. The genetic diversity found in the mtDNA control region in the southeastern Brazilian population reinforces the importance of increased national database in order to be important and informative in forensic cases.  相似文献   

20.
Y-chromosome single nucleotide polymorphism (Y-SNP) shows great variation in geographical distribution and population heterogeneity and can be used to map population genetics around the world. Massive parallel sequencing (MPS) methodology enables high-resolution Y-SNP haplogrouping for a certain male and is widely used in forensic genetics and evolutionary studies. In this present study, we used MPS to develop a customized 381 Y-SNP panel (SifaMPS 381 Y-SNP panel) to investigate the basic structure and subbranches of the haplogroup tree of the Chinese populations. The SifaMPS 381 Y-SNP panel covers all the Y-SNPs from our previously designed 183 Y-SNP panel and additional SNPs under the predominant haplogroups in the Chinese populations based on certain criteria. We also evaluated the sequencing matrix, concordance, sensitivity, repeatability of this panel and the ability to analyze mixed and case-type samples based on the Illumina MiSeq System. The results demonstrated that the novel MPS Y-SNP panel possessed good sequencing performance and generated accurate Y-SNP genotyping results. Although the recommended DNA input was greater than 1.25 ng, we observed that a lower DNA amount could still be used to analyze haplogroups correctly. In addition, this panel could handle mixed samples and common case-type samples and had higher resolution among Chinese Han males than previously reported. In conclusion, the SifaMPS 381 Y-SNP panel showed an overall good performance and offers a better choice for Y-SNP haplogrouping of the Chinese population, thereby facilitating paternal lineage classification, familial searching and other forensic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号