首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cavernous nerve injury is the main cause of erectile dysfunction following radical prostatectomy.The recovery of erectile function following radical prostatectomy remains challenging.Our previous studies found that injecting adipose-derived stem cells(ADSCs)into the cavernosa could repair the damaged cavernous nerves,but the erectile function of the treated rats could not be restored to a normal level.We evaluated the efficacy of ADSCs infected with a lentiviral vector encoding rat brain-derived neurotrophic factor(lenti-rBDNF)in a rat model of cavernous nerve injury.The rats were equally and randomly divided into four groups.In the control group,bilateral cavernous nerves were isolated but not injured.In the bilateral cavernous nerve injury group,bilateral cavernous nerves were isolated and injured with a hemostat clamp for 2 minutes.In the ADSCGFP and ADSCrBDNF groups,after injury with a hemostat clamp for 2 minutes,rats were injected with ADSCs infected with lenti-GFP(1×106 in 20μL)and lenti-rBDNF(1×106 in 20μL),respectively.Erectile function was assessed 4 weeks after injury by measuring intracavernosal pressures.Then,penile tissues were collected for histological detection and western blot assay.Results demonstrated that compared with the bilateral cavernous nerve injury group,erectile function was significantly recovered in the ADSCGFP and ADSCrBDNF groups,and to a greater degree in the ADSCrBDNF group.Neuronal nitric oxide synthase content in the dorsal nerves and the ratio of smooth muscle/collagen were significantly higher in the ADSCrBDNF and ADSCGFP groups than in the bilateral cavernous nerve injury group.Neuronal nitric oxide synthase expression was obviously higher in the ADSCrBDNF group than in the ADSCGFP group.These findings confirm that intracavernous injection with ADSCs infected with lenti-rBDNF can effectively improve erectile dysfunction caused by cavernous nerve injury.This study was approved by the Medical Animal Care and Welfare Committee of Wuhan University,China(approval No.2017-1638)on June 20,2017.  相似文献   

2.
《中国神经再生研究》2016,(8):1312-1321
Polysaccharides extracted from Lycium barbarum exhibit antioxidant properties. We hypothesized that these polysaccharides resist oxida-tive stress-induced neuronal damage following cavernous nerve injury. In this study, rat models were intragastrically administered Lycium barbarum polysaccharides for 2 weeks at 1, 7, and 14 days after cavernous nerve injury. Serum superoxide dismutase and glutathione peroxidase activities signiifcantly increased at 1 and 2 weeks post-injury. Serum malondialdehyde levels decreased at 2 and 4 weeks. At 12 weeks, peak intracavernous pressure, the number of myelinated axons and nicotinamide adenine dinucleotide phosphate-diaphorase-pos-itive nerve ifbers, levels of phospho-endothelial nitric oxide synthase protein and 3-nitrotyrosine were higher in rats administered at 1 day post-injury compared with rats administered at 7 and 14 days post-injury. These ifndings suggest that application of Lycium barbarum polysaccharides following cavernous nerve crush injury effectively promotes nerve regeneration and erectile functional recovery. This neu-roregenerative effect was most effective in rats orally administered Lycium barbarum polysaccharides at 1 day after cavernous nerve crush injury.  相似文献   

3.
Achalasia is dominated by injury to inhibitory nerves. As intramuscular interstitial cells of Cajal (ICC-IM) are proposed to form functional units with nitrergic nerves, their fate in achalasia may be critically important. We studied the relationship between loss of nitrergic nerves and injury to ICC-IM in patients with achalasia and determined associations between ICC-IM and mast cells (MC), using quantitative immunohistochemistry and electron microscopy. Loss of neuronal nitric oxide synthase (nNOS) immunoreactivity was completed within 3 years of acquiring achalasia. Thereafter, progressive ultrastructural injury to remaining nerve structures was evident. Within the first 2 years, the number of ICC-IM did not decline although ultrastructural injury was already present. Thereafter, loss of ICC-IM occurred unrelated to duration of disease. Damage to ICC-IM appeared unrelated to nerve injury. A significant MC infiltration was observed in the musculature; the number of MC was positively related to the persistent number of ICC-IM. Mast cell formed close contacts with ICC-IM and piecemeal-degranulation occurred towards ICC-IM. In conclusion, injury to ICC-IM in achalasia is variable, but not related to duration of disease and injury to nitrergic nerves. MC are prominent and form close functional contact with ICC-IM which may be responsible for their relatively long survival.  相似文献   

4.
Misdirection of regenerating axons is one of the factors that can explain the poor results often found after nerve injury and repair. In this study, we quantified the degree of misdirection and the effect on recovery of function after different types of nerve injury and repair in the rat sciatic nerve model; crush injury, direct coaptation, and autograft repair. Sequential tracing with retrograde labeling of the peroneal nerve before and 8 weeks after nerve injury and repair was performed to quantify the accuracy of motor axon regeneration. Digital video analysis of ankle motion was used to investigate the recovery of function. In addition, serial compound action potential recordings and nerve and muscle morphometry were performed. In our study, accuracy of motor axon regeneration was found to be limited; only 71% (± 4.9%) of the peroneal motoneurons were correctly directed 2 months after sciatic crush injury, 42% (± 4.2%) after direct coaptation, and 25% (± 6.6%) after autograft repair. Recovery of ankle motion was incomplete after all types of nerve injury and repair and demonstrated a disturbed balance of ankle plantar and dorsiflexion. The number of motoneurons from which axons had regenerated was not significantly different from normal. The number of myelinated axons was significantly increased distal to the site of injury. Misdirection of regenerating motor axons is a major factor in the poor recovery of nerves that innervate different muscles. The results of this study can be used as basis for developing new nerve repair techniques that may improve the accuracy of regeneration.  相似文献   

5.
A possible role for nitric oxide in growth and regeneration of dorsal root ganglion (DRG) afferents has been explored in lesion experiments by comparing immunocytochemistry for nitric oxide synthase (NOS) with that for the growth-associated phosphoprotein 43 (GAP-43). Sciatic nerve ligature induced a progressive increase in the number of small DRG cell profiles immunopositive for NOS between 2 days and 4 weeks of survival. In the proximal stump of the ligature, NOS-immunopositive fibers began to appear 2 days after injury and their growth cones were especially evident after 7 days. NOS-immunopositive fibers appeared past (i.e., distal to) the ligature at 14 days of survival and extended for at least 6 mm in either direction 4 weeks after the lesion. Dorsal root ligature alone at L4–L5 did not result in expression of NOS in DRG neurons or in the appearence of NOS-immunopositive fibers. In rats with dorsal root ligature and nerve ligature, the results were similar to those with nerve ligature only. DRG cell profiles immunopositive for GAP-43 kept increasing from 2 days to 4 weeks after sciatic nerve ligature and included small neurons initially and large neurons subsequently. Numerous axons became GAP-43 immunopositive on both sides of the ligature from 2 days after injury. In double-labeled material, about 80% of DRG cell profiles immunopositive for NOS were also immunopositive for GAP-43. The two antigens co-occurred in peripheral nerve axons proximal to the ligature starting at about 7 days and distal to it at about 2 weeks after ligature. Thus, in response to nerve lesion, nitric oxide may not only provide an injury signal to the central nervous system but may also contribute to the growth and regeneration of injured axons. J. Comp. Neurol. 404:64–74, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

6.
Physical activity after spinal cord injury promotes improvements in motor function, but its effects following peripheral nerve injury are less clear. Although axons in peripheral nerves are known to regenerate better than those in the CNS, methods of accelerating regeneration are needed due to the slow overall rate of growth. Therefore we studied the effect of two weeks of treadmill locomotion on the growth of regenerating axons in peripheral nerves following injury. The common fibular nerves of thy-1-YFP-H mice, in which a subset of axons in peripheral nerves express yellow fluorescent protein (YFP), were cut and repaired with allografts from non-fluorescent littermates, and then harvested two weeks later. Mice were divided into groups of low-intensity continuous training (CT, 60 min), low-intensity interval training (IT; one group, 10 reps, 20 min total), and high-intensity IT (three groups, 2, 4, and 10 reps). One repetition consisted of 2 min of running and 5 min of rest. Sixty minutes of CT resulted in the highest exercise volume, whereas 2 reps of IT resulted in the lowest volume of exercise. The lengths of regenerating YFP+ axons were measured in images of longitudinal optical sections of nerves. Axon profiles were significantly longer than control in all exercise groups except the low-intensity IT group. In the CT group and the high-intensity IT groups that trained with 4 or 10 repetitions axons were more than twice as long as unexercised controls. The number of intervals did not impact axon elongation. Axon sprouting was enhanced in IT groups but not the CT group. Thus exercise, even in very small quantities, increases axon elongation in injured peripheral nerves whereas continuous exercise resulting in higher volume (total steps) may have no net impact on axon sprouting.  相似文献   

7.
While peripheral nerves demonstrate the capacity for axonal regeneration, outcome following injury remains relatively poor, especially following prolonged denervation. Since axon-deprived Schwann cells (SCs) in the distal nerve progressively lose their ability to support axonal growth, we took the approach of using skin-derived precursor cells (SKPs) as an accessible source of replacement SCs that could be transplanted into chronically denervated peripheral nerve. In this study, we employed a delayed cross-reinnervation paradigm to assess regeneration of common peroneal nerve axons into the chronically denervated rodent tibial nerve following delivery of SKP-derived SC (SKP-SCs). SKP-SC treated animals exhibited superior axonal regeneration to media controls, with significantly higher counts of regenerated motorneurons and histological recovery similar to that of immediately repaired nerve. Improved axonal regeneration correlated with superior muscle reinnervation, as measured by compound muscle action potentials and wet muscle weights. We therefore conclude that SKPs represent an easily accessible, autologous source of stem cell-derived Schwann cells that show promise in improving regeneration through chronically injured nerves.  相似文献   

8.
Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. MK acts as a reparative neurotrophic factor in damaged peripheral nerves. A postulated role of MK in the degeneration and regeneration of sciatic nerves was explored by comparing wild‐type (Mdk+/+) mice with MK‐deficient (Mdk?/?) mice after freezing injury. In the Mdk?/? mice, a regenerative delay was observed, preceded by a decelerated Wallerian degeneration (WD). The relative wet weight of the soleus muscle slowly declined, and recovery was delayed compared with that in the Mdk+/+ mice. In the regenerating nerve, unmyelinated axons were unevenly distributed, and some axons contained myelin‐like, concentrically lamellated bodies. In the endplates of soleus muscles, nerve terminals containing synaptic vesicles disappeared in both mice. In Mdk?/? mice, the appearance of nerve terminals was delayed in synaptic vesicles of terminal buttons after injury. The recovery of evoked electromyogram was delayed in Mdk?/? mice compared with Mdk+/+ mice. Our results suggested a delay in axonal degeneration and regeneration in Mdk?/? mice compared with Mdk+/+ mice, and the delayed regeneration was associated with a delayed recovery of motor function. These findings show that a lack of MK following peripheral nerve injury is a critical factor in degeneration and regeneration, and manipulation of the supply of MK may offer interesting therapeutic options for the treatment of peripheral nerve damage. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.  相似文献   

10.
M.A. Bisby  P. Keen   《Brain research》1986,365(1):85-95
We compared changes in levels of substance P-like immunoreactivity (SPLI) in L4-6 dorsal root ganglia (DRG), L4-6 dorsal roots, sciatic nerve, tibial nerve and hind foot skin in rats following resection or crush injury of the sciatic nerve. The initial depletion of SPLI, which occurred in all areas sampled, was similar after either type of lesion. In DRG and dorsal roots, recovery to control values occurred in SPLI levels 35-45 days after sciatic crush, but not after resection. In sciatic nerve proximal to the injury, a partial recovery in SPLI content to about 60% of control occurred following crush injury, but not following resection. Distal to the injury, tibial nerve levels recovered rapidly following crush injury, consistent with the previously observed rapid regeneration of SPLI-containing axons. After resection, no recovery was observed until after 35 days, when it appeared that some axons succeeded in crossing the resection zone and regaining the distal nerve stump. Delayed and poor recovery of SPLI levels was observed in foot skin, even after crush injury. This correlated with the poor recovery of the plasma extravasation reaction, a functional index of SP-innervation of skin. In contrast, reinnervation by high-threshold mechanoreceptors was more rapid and complete, in agreement with a previous study. We conclude that although SPLI-containing axons regenerate rapidly, they appear to reinnervate skin less successfully than other afferents. Axon regeneration is associated with a recovery of SPLI levels which fell after axotomy: no recovery occurs if regeneration is prevented. Recovery was almost complete in DRG and roots, but incomplete in sciatic nerve. This peptide transmitter in afferent neurons thus behaves in a similar fashion to previously studied low-molecular weight transmitters and related materials in efferent neurons. Since recovery of SPLI levels begins before there is evidence for target reinnervation, it seems that axon regeneration is a sufficient condition for reversal of some axotomy-induced changes in these neurons. Further studies on substance P synthesis and on the response of individual DRG neurons to axotomy and regeneration will be required to explain fully the discrepancy between partial recovery of SPLI levels in sciatic nerve and full recovery in DRG and dorsal roots.  相似文献   

11.
It is important to develop methods which increase nerve regeneration since restoration of function following injury to peripheral nerves often requires outgrowth of the injured axons over long distances. In this study, axonal outgrowth after bilateral crush injury to the sciatic nerve of the rat was measured. One group with large-diameter nonpermeable silicone tubes and one group with large-diameter permeable silicone tubes applied around the crush site on one side had regeneration following nerve injury compared to controls on the other side. The length of regeneration of the regenerating axons were then measured 4, 5, and 6 days following the crush injury using the “pinch reflex test.” The presence of axons at the pinch level was confirmed by immunocytochemical staining for neurofilaments. The length of regeneration for rats with nonpermeable tubes was significantly greater than that of the contralateral control side and was so at all times (p < 0.05). The effect was present but not that pronounced where permeable tubes were used. We conclude that the outgrowth of regenerating sensory axons after sciatic nerve crush injury in the rat can be increased by enclosing the regeneration site in a silicone tube. The observed effect may be due to local mechanisms such as macrophage invasion or prevention of rapid wash-out of fluid from the crush zone.  相似文献   

12.
Following injury to central nervous tissues, damaged neurons are unable to regenerate their axons spontaneously. Implantation of peripheral nerves into the CNS, however, does result in axonal regeneration into these transplants and is one of the most powerful strategies to promote CNS regeneration. In the present study implantation of peripheral nerve bridges following dorsal hemisection is combined with ex vivo gene transfer with adenoviral vectors encoding neurotrophin-3 (Ad-NT-3) to examine whether this would stimulate regeneration of one of the long descending tracts of the spinal cord, the corticospinal tract (CST), into and beyond the peripheral nerve implant. We chose to use an adenoviral vector encoding NT-3 because CST axons are sensitive to this neurotrophin and Schwann cells in peripheral nerve implants do not express this neurotrophin. At 16 weeks postimplantation of Ad-NT-3-transduced intercostal nerves, approximately three- to fourfold more of the anterogradely traced corticospinal tract fibers had regrown their axons through gray matter below the lesion site when compared to control animals. Regrowth of CST fibers occurred over more than 8 mm distal to the lesion site. No regenerating CST fibers were, however, observed into the transduced peripheral implant. Animals with a peripheral nerve transduced with Ad-NT-3 also exhibited improved function of the hindlimbs when compared to control animals treated with an adenoviral vector encoding LacZ. Thus, transient overexpression of NT-3 in peripheral nerve tissue bridges is apparently sufficient to stimulate regrowth of CST fibers and to promote recovery of hindlimb function, but does not result in regeneration of CST fibers into such transplants. Taken together, combining an established neurotransplantation approach with viral vector-gene transfer promotes the regrowth of injured CST fibers through gray matter and improves the recovery of hindlimb function.  相似文献   

13.
《中国神经再生研究》2016,(10):1666-1669
Functional recovery atfer oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz) were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oc-ulomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. hTus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction.  相似文献   

14.
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.  相似文献   

15.
Peripheral nerve injury leads to substantial alterations in injured sensory neurons. These include cell death, phenotypic modifications, and regeneration. Primary sensory neurons have recently been shown not to die until a time beyond 4 months following a nerve crush or ligation and this loss is, moreover, limited to cells with unmyelinated axons, the C-fibers. The late loss of C-fibers may be due to a lack of target reinnervation during the regenerative phase. In order to investigate this, we have used a particular peripheral function, unique to C-fibers, as a measure of peripheral reinnervation: an increase in capillary permeability on antidromic activation of C-fibers, i.e., neurogenic extravasation. This was investigated in rats that had received a nerve crush injury 1 to 50 weeks earlier. Some recovery of the capacity of C-fibers to generate extravasation was detected at 8–10 weeks, which increased further at 12–14 weeks, and then plateaued at this level with no further recovery at 30 or 50 weeks. In intact and damaged sciatic nerves, Aβ-fibers never induced extravasation. These findings are compatible with the hypothesis that those C-fibers which make it back to their peripheral targets do not subsequently die and those that do not, may die.  相似文献   

16.
《中国神经再生研究》2016,(10):1549-1552
We review the biology and role of transforming growth factor beta 1(TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks(i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration.  相似文献   

17.
Cell adhesion molecules (CAMs), particularly L1, are important for axonal growth on Schwann cells in vitro. We have used in situ hybridization to study the expression of mRNAs for L1 and its close homologue CHL1, by neurons regenerating their axons in vivo, and have compared CAM expression with that of GAP-43. Adult rat sciatic nerves were crushed (allowing functional regeneration), or cut and ligated to maintain axonal sprouting but prevent reconnection with targets. In other animals lumbar dorsal roots were transected to produce slow regeneration of the central axons of sensory neurons. In unoperated animals L1 and CHL1 mRNAs were expressed at moderate levels by small- to medium-sized sensory neurons and L1 mRNA was expressed at moderate levels by motor neurons. Many large sensory neurons expressed neither L1 nor CHL1 mRNAs and motor neurons expressed little or no CHL1 mRNA. Neither motor nor sensory neurons showed any obvious upregulation of L1 mRNA after axotomy. Increased CHL1 mRNA was found in motor neurons and small- to medium-sized sensory neurons 3 days to 2 weeks following sciatic nerve crush, declining toward control levels by 5 weeks when regeneration was complete. Cut and ligation injuries caused a prolonged upregulation of CHL1 mRNA (and GAP-43 mRNA), indicating that reconnection with target tissues may be required to signal the return to control levels. Large sensory neurons did not upregulate CHL1 mRNA after axotomy and thus regenerated within the sciatic nerve without producing CHL1 or L1. Dorsal root injuries caused a modest, slow upregulation of CHL1 mRNA by some sensory neurons. CHL1 mRNA was also upregulated by many presumptive Schwann cells in injured nerves and by some satellite cells around large sensory neurons after sciatic nerve injuries and was transiently upregulated by some astrocytes in the degenerating dorsal columns after dorsal rhizotomy.  相似文献   

18.
Our past work indicates that growth-inhibiting chondroitin sulfate proteoglycan (CSPG) is abundant in the peripheral nerve sheaths and interstitium. In this study we tested if degradation of CSPG by chondroitinase enhances axonal regeneration through the site of injury after (a) nerve crush and (b) nerve transection and coaptation. Adult rats received the same injury bilaterally to the sciatic nerves and then chondroitinase ABC was injected near the injury site on one side, and the contralateral nerve was injected with vehicle alone. Nerves were examined 2 days after injury in the nerve crush model and 4 days after injury in the nerve transection model. Chondroitinase-dependent neoepitope immunolabeling showed that CSPG was thoroughly degraded around the injury site in the chondroitinase-treated nerves. Axonal regeneration through the injury site and into the distal nerve was assessed by GAP-43 immunolabeling. Axonal regeneration after crush injury was similar in chondroitinase-treated and control nerves. In contrast, axonal regrowth through the coaptation of transected nerves was markedly accelerated and the ingress of axons into the distal segment was increased severalfold in nerves injected with chondroitinase. On the basis of these results we concluded that growth inhibition by CSPG contributes critically to the poor regenerative growth of axons in nerve transection repair. In addition, degradation of CSPG by injection of chondroitinase ABC at the site of nerve repair increased the ingress of axonal sprouts into basal laminae of the distal nerve segment, presumably by enabling more latitude in growth at the interface of coapted nerve. This suggests that chondroitinase application may be used clinically to improve the outcome of primary peripheral nerve repair.  相似文献   

19.
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.  相似文献   

20.
Reactions of unmyelinated nerve fibers to injury. An ultrastructural study   总被引:2,自引:0,他引:2  
Reactions of unmyelinated nerves to injury were studied in the distal stumps of rabbit anterior mesenteric nerves following transection. These nerves, chosen because they are almost exclusively unmyelinated, were examined by phase contrast and electron microscopy at intervals from 12 h to 2 weeks after transection. Swollen axons containing mitochondria and other organelles were prominent in the proximal few mm of the distal stump of anterior mesenteric nerve trunks during the first 4 days after transection. As early as 6 days after injury, regenerative changes consisting of numerous small axons with an increased axon-Schwann cell ratio were observed; there was little trace of degenerating axons, or their debris. Thus the capacity of unmyelinated nerve fibers for rapid regeneration has been demonstrated. It is anticipated that this delineation of reactions in unmyelinated nerves will contribute to a greater understanding of functional and morphologic abnormalities in disorders of peripheral nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号