首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Head motion is a fundamental problem in brain MRI. The problem is further compounded in diffusion tensor imaging because of long acquisition times, and the sensitivity of the tensor computation to even small misregistration. To combat motion artifacts in diffusion tensor imaging, a novel real‐time prospective motion correction method was introduced using an in‐bore monovision system. The system consists of a camera mounted on the head coil and a self‐encoded checkerboard marker that is attached to the patient's forehead. Our experiments showed that optical prospective motion correction is more effective at removing motion artifacts compared to image‐based retrospective motion correction. Statistical analysis revealed a significant improvement in similarity between diffusion data acquired at different time points when prospective correction was used compared to retrospective correction (P < 0.001). Magn Reson Med, 2010. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
6.
Patient motion during an MRI exam can result in major degradation of image quality, and is of increasing concern due to the aging population and its associated diseases. This work presents a general strategy for real‐time, intraimage compensation of rigid‐body motion that is compatible with multiple imaging sequences. Image quality improvements are established for structural brain MRI acquired during volunteer motion. A headband integrated with three active markers is secured to the forehead. Prospective correction is achieved by interleaving a rapid track‐and‐update module into the imaging sequence. For every repetition of this module, a short tracking pulse‐sequence remeasures the marker positions; during head motion, the rigid‐body transformation that realigns the markers to their initial positions is fed back to adaptively update the image‐plane—maintaining it at a fixed orientation relative to the head—before the next imaging segment of k‐space is acquired. In cases of extreme motion, corrupted lines of k‐space are rejected and reacquired with the updated geometry. High‐precision tracking measurements (0.01 mm) and corrections are accomplished in a temporal resolution (37 ms) suitable for real‐time application. The correction package requires minimal additional hardware and is fully integrated into the standard user interface, promoting transferability to clinical practice. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
10.
11.
Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image‐based approach for prospective motion correction is described, which utilizes three orthogonal two‐dimensional spiral navigator acquisitions, along with a flexible image‐based tracking method based on the extended Kalman filter algorithm for online motion measurement. The spiral navigator/extended Kalman filter framework offers the advantages of image‐domain tracking within patient‐specific regions‐of‐interest and reduced sensitivity to off‐resonance‐induced corruption of rigid‐body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady‐state error of less than 10% of the motion magnitude, even for large compound motions that included rotations over 15 deg. A preliminary in vivo application in three‐dimensional inversion recovery spoiled gradient echo (IR‐SPGR) and three‐dimensional fast spin echo (FSE) sequences demonstrates the effectiveness of the spiral navigator/extended Kalman filter framework for correcting three‐dimensional rigid‐body head motion artifacts prospectively in high‐resolution three‐dimensional MRI scans. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Motion—both rigid‐body and nonrigid—is the main limitation to in vivo, high‐resolution larynx imaging. In this work, a new real‐time motion compensation algorithm is introduced. Navigator data are processed in real time to compute the displacement information, and projections are corrected using phase modulation in k‐space. Upon automatic feedback, the system immediately reacquires the data most heavily corrupted by nonrigid motion, i.e., the data whose corresponding projections could not be properly corrected. This algorithm overcomes the shortcomings of the so‐called diminishing variance algorithm by combining it with navigator‐based rigid‐body motion correction. Because rigid‐body motion correction is performed first, continual bulk motion no longer impedes nor prevents the convergence of the algorithm. Phantom experiments show that the algorithm properly corrects for translations and reacquires data corrupted by nonrigid motion. Larynx imaging was performed on healthy volunteers, and substantial reduction of motion artifacts caused by bulk shift, swallowing, and coughing was achieved. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
In MRI of the human brain, subject motion is a major cause of magnetic resonance image quality degradation. To compensate for the effects of head motion during data acquisition, an in‐bore optical motion tracking system is proposed. The system comprises two MR‐compatible infrared cameras that are fixed on a holder right above and in front of the head coil. The resulting close proximity of the cameras to the object allows precise tracking of its movement. During image acquisition, the MRI scanner uses this tracking information to prospectively compensate for head motion by adjusting the gradient field direction and radio frequency (RF) phases and frequencies. Experiments performed on subjects demonstrate robust system performance with translation and rotation accuracies of 0.1 mm and 0.15°, respectively. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Intracavity imaging coils provide higher signal‐to‐noise than surface coils and have the potential to provide higher spatial resolution in shorter acquisition times. However, images from these coils suffer from physiologically induced motion artifacts, as both the anatomy and the coils move during image acquisition. We developed prospective motion‐correction techniques for intracavity imaging using an array of tracking coils. The system had <50 ms latency between tracking and imaging, so that the images from the intracavity coil were acquired in a frame of reference defined by the tracking array rather than by the system's gradient coils. Two‐dimensional gradient‐recalled and three‐dimensional electrocardiogram‐gated inversion‐recovery‐fast‐gradient‐echo sequences were tested with prospective motion correction using ex vivo hearts placed on a moving platform simulating both respiratory and cardiac motion. Human abdominal tests were subsequently conducted. The tracking array provided a positional accuracy of 0.7 ± 0.5 mm, 0.6 ± 0.4 mm, and 0.1 ± 0.1 mm along the X, Y, and Z directions at a rate of 20 frames‐per‐second. The ex vivo and human experiments showed significant image quality improvements for both in‐plane and through‐plane motion correction, which although not performed in intracavity imaging, demonstrates the feasibility of implementing such a motion‐correction system in a future design of combined tracking and intracavity coil. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
Despite the existence of numerous motion correction methods, head motion during MRI continues to be a major source of artifacts and can greatly reduce image quality. This applies particularly to diffusion weighted imaging, where strong gradients are applied during long encoding periods. These are necessary to encode microscopic movements. However, they also make the technique highly sensitive to bulk motion. In this work, we present a prospective motion correction method where all applied gradients are adjusted continuously to compensate for changes of the object position and ensure the desired phase evolution in the image coordinate frame. Additionally, in phantom experiments this new technique is used to reproduce motion artifacts with high accuracy by changing the position of the imaging frame relative to the measured object. In vivo measurements demonstrate the validity of the new correction method.  相似文献   

17.
Head motion is a fundamental problem in functional magnetic resonance imaging and is often a limiting factor in its clinical implementation. This work presents a rigid‐body motion correction strategy for echo‐planar imaging sequences that uses micro radiofrequency coil “active markers” for real‐time, slice‐by‐slice prospective correction. Before the acquisition of each echo‐planar imaging‐slice, a short tracking pulse‐sequence measures the positions of three active markers integrated into a headband worn by the subject; the rigid‐body transformation that realigns these markers to their initial positions is then fed back to dynamically update the scan‐plane, maintaining it at a fixed orientation relative to the head. Using this method, prospectively‐corrected echo‐planar imaging time series are acquired on volunteers performing in‐plane and through‐plane head motions, with results demonstrating increased image stability over conventional retrospective image‐realignment. The benefit of this improved image stability is assessed in a blood oxygenation level dependent functional magnetic resonance imaging application. Finally, a non‐rigid‐body distortion‐correction algorithm is introduced to reduce the remaining signal variation. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Subject motion during brain magnetic resonance spectroscopy acquisitions generally reduces the magnetic field (B0) homogeneity across the volume of interest or voxel. This is the case even if prospective motion correction ensures that the voxel follows the head. We introduce a novel method for rapidly mapping linear variations in B0 across a small volume using two‐dimensional excitations. The new field mapping technique was integrated into a prospectively motion‐corrected single‐voxel 1H magnetic resonance spectroscopy sequence. Interference with the magnetic resonance spectroscopy measurement was negligible, and there was no penalty in scan time. Frequency shifts were also measured continuously, and both frequency and first‐order shim corrections were applied in real time. Phantom experiments and in vivo studies demonstrated that the resulting motion‐ and shim‐corrected sequence is able to mitigate line broadening and maintain spectral quality even in the presence of large‐amplitude subject motion. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Head motion artifacts are a major problem in functional MRI that limit its use in neuroscience research and clinical settings. Real‐time scan‐plane correction by optical tracking has been shown to correct slice misalignment and nonlinear spin‐history artifacts; however, residual artifacts due to dynamic magnetic field nonuniformity may remain in the data. A recently developed correction technique, Phase Labeling for Additional Coordinate Encoding, can correct for absolute geometric distortion using only the complex image data from two echo planar images with slightly shifted k‐space trajectories. An approach is presented that integrates Phase Labeling for Additional Coordinate Encoding into a real‐time scan‐plane update system by optical tracking, applied to a tissue‐equivalent phantom undergoing complex motion and an functional MRI finger tapping experiment with overt head motion to induce dynamic field nonuniformity. Experiments suggest that such integrated volume‐by‐volume corrections are very effective at artifact suppression, with potential to expand functional MRI applications. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号