首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This review provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ASL in Dementia consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this review, we describe the major considerations and trade‐offs in implementing an ASL protocol and provide specific recommendations for a standard approach. Our conclusion is that as an optimal default implementation, we recommend pseudo‐continuous labeling, background suppression, a segmented three‐dimensional readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model. Magn Reson Med 73:102–116, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
Parameter maps: Relaxation times T1, T2 and T*2, MTR and frequency for one exemplary slice. All images represent different rats and slice positions. All maps were generated by a pixel‐by‐pixel fit of the corresponding parameters; SNR differences are caused by the varying fitting accuracies. The arrows in the T*2 image (c) point out cortical veins. The increased MTR on the left side of image (d) is due to B1 inhomogeneity. From the article by Pohmann et al (pp 1572–1581).  相似文献   

7.
8.
9.
10.
11.
12.
13.
Multiparametric quantitative imaging is gaining increasing interest due to its widespread advantages in clinical applications. Magnetic resonance fingerprinting is a recently introduced approach of fast multiparametric quantitative imaging. In this article, magnetic resonance fingerprinting acquisition, dictionary generation, reconstruction, and validation are reviewed.  相似文献   

14.
15.
Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a noninvasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages, and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides noninvasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts toward prevention and early intervention in OA. J. Magn. Reson. Imaging 2013;38:991–1008. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
17.
Acute coronary syndromes (ACS) continue to be the most common morbid condition of industrialized nations. The advent of and technical improvements in revascularization and medical therapy have led to a steady decline in mortality rates. However, many patients who suffer unstable angina or myocardial infarction require further testing and risk stratification to guide therapeutic selection and prognosis assignment. Myocardial edema imaging with cardiac magnetic resonance (CMR) affords the ability to define the amount of myocardium at risk, refine estimates of prognosis and provide guidance for therapies with excellent sensitivity compared with standard clinical markers. This review will discuss the rationale for edema imaging, how it is performed using CMR, and potential clinical applications. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号