首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delayed gadolinium‐enhanced MRI of cartilage is a technique, which involves T1 mapping to identify changes in the structural integrity of cartilage associated with osteoarthritis. Currently, the gold standard is 2D inversion recovery turbo spin echo, which suffers from long acquisition times and limited coverage. Three‐dimensional variable flip angle (VFA) is an alternate technique, which has been shown to be accurate when an estimate of T1 is available a priori. This study validates the variable flip angle method for delayed gadolinium‐enhanced MRI of cartilage of the femoro‐tibial knee cartilage. When amplitude of (excitation) radiofrequency field inhomogeneities were minimized using nonselective pulses and amplitude of (excitation) radiofrequency field correction using an additional acquisition of a amplitude of (excitation) radiofrequency field map, the accuracy of T1 measurements were improved, and slice‐to‐slice variations over the 3D volume were minimized. In conclusion, fast 3D T1 mapping using the variable flip angle method with amplitude of (excitation) radiofrequency field correction appears to be an efficient and accurate method for delayed gadolinium‐enhanced MRI of cartilage of the knee. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
We examined the influence of flexed knee positions on cartilage MR assessments. Sagittal T2, T*2, and delayed gadolinium‐enhanced MRI of cartilage (dGEMRIC) maps of the femoral cartilage were obtained in eight 6‐month‐old porcine femorotibial joints in the extended knee position (position A: flexion 0° and femoral shaft in parallel with the amplitude of static field), flexed knee position (position B: flexion 40° and femoral shaft oriented at 40° to the amplitude of static field), and oblique‐placed knee‐extended position (position C: flexion 0° and femoral shaft oriented at 40° to the amplitude of static field). Comparison of the MR parameters between positions A and C showed isolated influence of the magic‐angle effect, and comparison between positions A and B showed effects of knee flexion. Proteoglycan and hydroxyproline content in cartilage specimen at each region of interest had no significant correlation with T2, T*2, and dGEMRIC values. At the central zone, located on a weight‐bearing area and parallel to the amplitude of static field, T2/T*2/dGEMRIC values increased by 6.8/11/0.8% at position C and by 24/44/31% at position B compared with position A. There was a significant increase in T2 and T*2 values at position B compared with those at position A. The substantial changes in T2, T*2, and dGEMRIC were shown in response to knee flexion, presumably due to the compounding influence of the magic‐angle effect and change in the intra‐articular biomechanical condition. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique has shown promising results in pilot clinical studies of early osteoarthritis. Currently, its broader acceptance is limited by the long scan time and the need for postprocessing to calculate the T1 maps. A fast T1 mapping imaging technique based on two spoiled gradient echo images was implemented. In phantom studies, an appropriate flip angle combination optimized for center T1 of 756 to 955 ms yielded excellent agreement with T1 measured using the inversion recovery technique in the range of 200 to 900 ms, of interest in normal and diseased cartilage. In vivo validation was performed by serially imaging 26 hips using the inversion recovery and the Fast 2 angle T1 mapping techniques (center T1 756 ms). Excellent correlation with Pearson correlation coefficient R2 of 0.74 was seen and Bland‐Altman plots demonstrated no systematic bias. Magn Reson Med 60:768–773, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
Between 1984 and 1991, 36 patients with the diagnosis of recurrent patellar dislocation were treated operatively using the proximal realignment procedure. Thirty patients were available for follow-up. The average follow-up period was 6.3 years (range 2–9.6 years). The average age at injury was 21.3 years with a predominance of female patients. At follow-up all knees were physically examined. The results were evaluated using the score of Larsen and Lauridsen as well as the Tegner score and subjective assessment. Radiographs from 19 patients (63%) were available for review. At follow-up one patient suffered from a recurrence of patellar dislocation. All patients had stable knee joints and a full range of motion. There was no statistically significant difference between pre- and postoperative sports activity level. Seven patients (23.3%) had excellent results, 12 patients (39.9%) good results and 1 a poor result using the Larsen and Lauridsen score. Subjective assessment revealed the operative result as very good, good or satisfactory in 90%. Patellofemoral osteoarthritis was seen in 7 of 19 patients (36.8%). With a proximal realignment procedure good clinical results can be achieved for recurrent patellar dislocation. Subjective satisfaction with this procedure is rated as good. It is successful in preventing redislocation. Received: 18 January 1998 Accepted: 28 August 1998  相似文献   

7.
8.

Objective

To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia.

Methods

This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16–45 years).MRI of 97 knees were performed in these patients at 1.5 T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet–proximal–lateral (EPL), external facet–proximal–central (EPC), internal facet–proximal–central (IPC), internal facet–proximal–medial (IPM), 4 in the middle section (external facet–middle–lateral (EML), external facet–middle–central (EMC), internal facet–middle–central (IMC), internal facet–middle–medial (IMM) and 4 distal (external facet–distal–lateral (EDL), external facet–distal–central (EDC), internal facet–distal–central (IDC), internal facet–distal–medial (IDM).

Results

T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p < 0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p < 0.05).

Conclusions

Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the central area of the middle section, where T2 values remain increased.  相似文献   

9.

Purpose

To evaluate if the difference between pre‐ and post‐Gd‐DTPA2‐ relaxation rate (ΔR1) provides better differentiation of osteoarthritic patients (OA) from healthy subjects (HS) with dGEMRIC, as compared to post‐Gd‐DTPA2‐ spin‐lattice relaxation time (T1Gd).

Materials and Methods

Seventeen OA and 14 HS underwent pre‐ and 90 minutes postcontrast (Gd‐DTPA2‐) magnetic resonance imaging (MRI) of the knee, using inversion recovery fast spin‐echo and/or Lock–Locker sequences for T1 mapping. Effect sizes for T1pre, T1Gd, and ΔR1 were calculated, and receiver operating characteristic (ROC) curve and regression analysis were also performed to assess the effectiveness of each parameter in the separation of OA and HS.

Results

T1Gd and ΔR1 were almost identical in terms of areas under ROC curves (0.903 and 0.914, respectively), and effect sizes (1.34 and 1.31, respectively). These were significantly higher than T1pre. In addition, a high inverse correlation was observed between ΔR1 vs. T1Gd (R = 0.96).

Conclusion

Either T1Gd or ΔR1 could be used as an index in the evaluation of native cartilage. However, considering the practical logistical cost involved in terms of time and effort to acquire precontrast T1 measurements, our data further support the continued use of T1Gd as the dGEMRIC index in the evaluation of native cartilage. J. Magn. Reson. Imaging 2009;29:494–497. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
PURPOSE: To quantify the spin-lattice relaxation time in the rotating frame (T1rho) in various clinical grades of human osteoarthritis (OA) cartilage specimens obtained from total knee replacement surgery, and to correlate the T1rho with OA disease progression and compare it with the transverse relaxation time (T2). MATERIALS AND METHODS: Human cartilage specimens were obtained from consenting patients (N = 8) who underwent total replacement of the knee joint at the Pennsylvania Hospital, Philadelphia, PA, USA. T2- and T1rho-weighted images were obtained on a 4.0 Tesla whole-body GE Signa scanner (GEMS, Milwaukee, WI, USA). A 7-cm diameter transmit/receive quadrature birdcage coil tuned to 170 MHz was employed. RESULTS: All of the surgical knee replacement OA cartilage specimens showed elevated relaxation times (T2 and T1rho) compared to healthy cartilage tissue. In various grades of OA specimens, the T1rho relaxation times varied from 62 +/- 5 msec to 100 +/- 8 msec (mean +/- SEM) depending on the degree of cartilage degeneration. However, T2 relaxation times varied only from 32 +/- 2 msec to 45 +/- 4 msec (mean +/- SEM) on the same cartilage specimens. The increase in T2 and T1rho in various clinical grades of OA specimens were approximately 5-50% and 30-120%, respectively, compared to healthy specimens. The degenerative status of the cartilage specimens was also confirmed by histological evaluation. CONCLUSION: Preliminary results from a limited number of knee specimens (N = 8) suggest that T1rho relaxation mapping is a sensitive noninvasive marker for quantitatively predicting and monitoring the status of macromolecules in early OA. Furthermore, T1rho has a higher dynamic range (>100%) for detecting early pathology compared to T2. This higher dynamic range can be exploited to measure even small macromolecular changes with greater accuracy compared to T2. Because of these advantages, T1rho relaxation mapping may be useful for evaluating early OA therapy.  相似文献   

12.
In much of the literature about patellar instability, the role of the passive medial patellar stabilizers traditionally has been ignored or afforded only passing comment. But excessive passive lateral patellar mobility must be considered an essential element in the majority of patients with recurrent acute lateral patellar instability. In patients who have sustained patellar dislocation, numerous authors have shown excessive lateral or total mediolateral patellar mobility compared with normal controls. Clinical and laboratory magnetic resonance evidence suggests that the medial retinaculum shows typical patterns of injury in many cases of acute lateral patellar dislocation. Residual laxity of these soft tissue restraints can be sufficient to allow recurrent lateral instability of the patella after the initial dislocation event. Several studies suggest that the medial patellofemoral ligament (MPFL) is the primary passive soft tissue restraint to lateral patellar displacement. These studies have shown promising evidence that repair and/or advancement of the MPFL is capable of restoring normal lateral patellar mobility in cadaver specimens. If the MPFL is repaired effectively in patients who have sustained retinacular injury in the setting of patellar dislocation, then it should reduce the risk of recurrent patellar instability. In this article, the senior author's surgical technique for advancement and repair of the MPFL is presented. Postoperative rehabilitation is also discussed.  相似文献   

13.
T2 of articular cartilage in the presence of Gd-DTPA2-.   总被引:1,自引:0,他引:1  
T(2) information and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) are both used to characterize articular cartilage. They are currently obtained in separate studies because Gd-DTPA(2-) (which is needed for dGEMRIC) affects the inherent T(2) information. In this study, T(2) was simulated and then measured at 8.45 T in 20 sections from two human osteochondral samples equilibrated with and without Gd-DTPA(2-). Both the simulations and data demonstrated that Gd-DTPA(2-) provides a non-negligible mechanism for relaxation, especially with higher (1 mM) equilibrating Gd-DTPA(2-) concentrations, and in areas of tissue with high T(2) (due to weak inherent T(2) mechanisms) and high tissue Gd-DTPA(2-) (due to a low glycosaminoglycan concentration). Nonetheless, T(2)-weighted images of cartilage equilibrated in 1 mM Gd-DTPA(2-) showed similar T(2) contrast with and without Gd-DTPA(2-), demonstrating that the impact on T(2) was not great enough to affect identification of T(2) lesions. However, T(2) maps of the same samples showed loss of conspicuity of T(2) abnormalities. We back-calculated inherent T(2)'s (T(2,bc)) using a T(2)-relaxivity value from a 20% protein phantom (r(2) = 9.27 +/- 0.09 mM(-1)s(-1)) and the Gd-DTPA(2-) concentration calculated from T(1,Gd). The back-calculation restored the inherent T(2) conspicuity, and a correlation between T(2) and T(2,bc) of r = 0.934 (P < 0.0001) was found for 80 regions of interest (ROIs) in the sections. Back-calculation of T(2) is therefore a viable technique for obtaining T(2) maps at high equilibrating Gd-DTPA(2-) concentrations. With T(2)-weighted images and/or low equilibrating Gd-DTPA(2-) concentrations, it may be feasible to obtain both T(2) and dGEMRIC information in the presence of Gd-DTPA(2-) without such corrections. These conditions can be designed into ex vivo studies of cartilage. They appear to be applicable for clinical T(2) studies, since pilot clinical data at 1.5 T from three volunteers demonstrated that calculated T(2) maps are comparable before and after "double dose" Gd-DTPA(2-) (as utilized in clinical dGEMRIC studies). Therefore, it may be possible to perform a comprehensive clinical examination of dGEMRIC, T(2), and cartilage volume in one scanning session without T(2) data correction.  相似文献   

14.
PURPOSE: To rapidly acquire T(1)-weighted images using a three-dimensional fast low angle shot (3D FLASH) sequence in combination with generalized autocalibrating partially parallel acquisitions (GRAPPA) and variable flip angle (VFA) method at 3.0T. MATERIALS AND METHODS: 3D T(1) maps of model systems (gadolinium [Gd] and agarose phantoms), bovine cartilage, and human subjects were constructed on a 3.0T clinical whole-body MR scanner. The T(1) values of model systems measured using the 2D inversion-recovery fast-spin-echo (IR-FSE) sequence were considered as a reference method to validate the rapid 3D method for comparison. RESULTS: The root mean square coefficient of variation percentage (RMS-CV%) of the median T(1) of agarose phantom across different acquisition methods was approximately 6.2%. The RMS-CV% of the median T(1) of bovine cartilage across different acquisition methods was approximately 4.1%. The RMS-CV% of median T(1) of the cartilages among the subjects was between approximately 7.3% to 11.1%. In our study, rapid 3D-T(1) mapping with VFA and parallel imaging with different acceleration factors (AFs) (AF = 1, 2, 3, and 4) seems to have no obvious influence on the T(1) mapping (before and after contrast agent administration). CONCLUSION: The preliminary results demonstrate that it is possible to quantify 3D-T(1) mapping of the whole knee joint (with 0.7 mm(3) isotropic resolution) under approximately five minutes with excellent in vivo reproducibility at 3.0T.  相似文献   

15.
Purpose Magnetic resonance imaging (MRI) has been commonly used for the preoperative evaluation of recurrent lateral patellar dislocation (RLPD). The purpose of this study was to determine the usefulness of high-resolution MRI (HR-MRI) with a microscopy coil for diagnosing RLPD. Materials and methods The study group consisted of 15 patients with clinically diagnosed RLPD and 10 normal volunteers. All studies were performed on a 1.5-T MR system. First, conventional MRIs of the whole knee joint were obtained using the knee coil. Then HR-MRI scans using a microscopy coil in the medial aspect of the patella were obtained at the level of the superior pole of the patella, targeting the medial patellofemoral ligament (MPFL). The acquired HR-MRIs with RLPD were reviewed concerning the MPFL injury and the patellar injury. Results The MPFL was distinguished as a separate ligament, and the layer structure of the patellar cartilage was visualized clearly in all volunteers. The MPFL injury was visualized in 12 cases (87%); it included discontinuity, thickening, and loosening. The patellar injury was visualized in 11 cases (73%), which included dissecans of the medial margin and cartilage injuries. Conclusion HR-MRI with a microscopy coil provides precise information of the MPFL and patellar cartilage injury for the diagnosis of RLPD.  相似文献   

16.
The macromolecular structure and mechanical properties of articular cartilage are interrelated and known to vary topographically in the human knee joint. To investigate the potential of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1, and T2 mapping to elucidate these differences, full-thickness cartilage disks were prepared from six anatomical locations in nonarthritic human knee joints (N = 13). Young's modulus and the dynamic modulus at 1 Hz were determined with the use of unconfined compression tests, followed by quantitative MRI measurements at 9.4 Tesla. Mechanical tests revealed reproducible, statistically significant differences in moduli between the patella and the medial/lateral femoral condyles. Typically, femoral cartilage showed higher Young's (>1.0 MPa) and dynamic (>8 MPa) moduli than tibial or patellar cartilage (Young's modulus < 0.9 MPa, dynamic modulus < 8 MPa). dGEMRIC moderately reproduced the topographical variation in moduli. Additionally, T1, T2, and dGEMRIC revealed topographical differences that were not registered mechanically. The different MRI and mechanical parameters showed poor to excellent linear correlations, up to r = 0.87, at individual test sites. After all specimens were pooled, dGEMRIC was the best predictor of compressive stiffness (r = 0.57, N = 77). The results suggest that quantitative MRI can indirectly provide information on the mechanical properties of human knee articular cartilage, as well as the site-dependent variations of these properties. Investigators should consider the topographical variation in MRI parameters when conducting quantitative MRI of cartilage in vivo.  相似文献   

17.
18.
PURPOSE: To demonstrate the feasibility of three-dimensional (3D) T(1rho)-weighted imaging of human knee joint at 3.0T without exceeding the specific absorption rate (SAR) limits and the measurement of the baseline T(1rho) values of patellar cartilage and several muscles at the knee joint. MATERIALS AND METHODS: 3D gradient-echo sequence with a self-compensating spin-lock pulse cluster of 250 Hz power was used to acquire 3D-T(1rho)-weighted images of the knee joint of five healthy subjects. Global and regional analysis of patellar cartilage T(1rho) were performed. Furthermore, T(1rho) of several periarticular muscles were analyzed. RESULTS: The global average T(1rho) value of the patellar cartilage varied from 39 to 43 msec. The regional average T(1rho) values varied from 38 to 42 msec, and from 42 to 44 msec for medial and lateral facets, respectively. In vivo reproducibility of average T(1rho) of patellar cartilage was found to be 5% (coefficient of variation). Similarly, the global average T(1rho) values for biceps femoris, lateral gastrocnemius, medial gastrocnemius, and sartorius varied between 31-46, 29-49, 35-48, and 32-50 msec, respectively. CONCLUSION: We demonstrated the feasibility of 3D-T(1rho)-weighted imaging of the knee joint at 3.0T without exceeding SAR limits.  相似文献   

19.
T and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T and T2 values was investigated using Z‐scores. The spatial variation of T and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray‐level co‐occurrence matrices (GLCM). The mean Z‐scores for T and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T and T2 Z‐scores showed a large range in both controls and OA patients (0.2–0.7). OA patients had significantly greater GLCM contrast and entropy of T values than controls (P < 0.05). In summary, T and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号