首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent neuroimaging studies reported complex changes in cerebral blood flow (CBF) in early-staged Huntington’s disease (HD) patients. Deckel and co-workers [Deckel and Duffy, Brain Res. (in press); Deckel and Cohen, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 24 (2000) 193; Deckel et al., Neurology 51 (1998) 1576; Deckel et al., J. Nucl. Med. 41 (2000) 773] suggested that these findings might be accounted for, in part, by alterations in cerebral nitric oxide (NO) and its byproduct, peroxynitrite. The current experiment tested this hypothesis by altering NO levels via manipulations of dietary -arginine (ARG), the dietary precursor of NO, in mice transgenic for HD. Seventy-one mice were assigned at 12 weeks of age to one of three isocaloric diets that varied in their content of ARG. These diets included: (a) 0% ARG, (b) 1.2% ARG (i.e. typical mouse chow), or (c) 5% ARG. The 5% ARG diets in HD mice accelerated the time of onset of body weight loss (P<0.05) and motor impairments (P<0.05), and increased resting CBF in HD relative to control (P<0.05). Conversely, the 0% ARG diet demonstrated no loss of body weight and had no changes in CBF relative to controls. However, the 0% ARG HD group continued to show significant deficits on motor testing (P<0.05). The 1.2% ARG HD group showed reduced body weight loss, better motor functioning, and fewer changes in CBF compared to the 5% ARG HD group. Immunocytochemistry analysis found greater deposition of nitrotyrosine in the cortex, and vasculature, of HD+ mice, 5% and 1.2%>0% arginine diets. When collapsed across all conditions, CBF inversely correlated (P<0.05) both with the body weight and motor changes suggesting that changes in CBF are associated with behavioral decline in HD mice. Collectively, these findings indicate that dietary consumption of the NO precursor ARG has a measurable, but complex, effect on symptom progression in HD transgenic mice, and implicates NO in the pathophysiology of HD.  相似文献   

2.
Previous work found that dietary l-arginine alters symptom progression in mice transgenic for Huntington's disease (HD), and that cerebral blood flow (CBF) is abnormal in early stage HD patients. Both of these findings potentially implicate nitric oxide (NO) and its converting enzyme, nitric oxide synthase (NOS), in HD. The current experiment found that both NOS enzymatic activity and neuronal NOS (nNOS) protein expression were reduced (P<0.05) in R6/2 HD transgenic mice compared to non-HD controls (CON). Conversely, inducible NOS (iNOS) protein expression was not significantly different between groups. The changes in nNOS were accompanied by changes in protein expression of calmodulin kinase II (CaMKII) (P<0.05) and calmodulin kinase IV (CaMKIV) (P<0.05). Protein expression of 3-nitrotyrosine (3-NT), a marker for the neurotoxin peroxynitrite, was slightly increased in non-drug treated HD and was accompanied by increased immunostaining of 3-NT in cells adhering to the vasculature and choroid plexus. Mice that received the broad-spectrum NOS inhibitor N(g)-nitro-L-arginine methyl ester hydrochloride (L-NAME) via their drinking water had reduced NOS enzyme activity. NOS activity varied as a function of L-NAME dose, was virtually eliminated in the 500-mg/l groups, and correlated (P<0.05) with the behavioral scores as revealed by regression and correlation analyses. High dose L-NAME (500 mg/l) accelerated symptom onset in HD transgenics. These results support the hypothesis that nNOS activity and NO production are abnormal in HD, this in the setting of a more global dysregulation of calcium protein expression. Taken collectively with earlier data from our laboratory demonstrating abnormal CBF findings in early-stage HD patients, these results suggest that abnormalities in NOS function may significantly contribute to the neurodegeneration found in HD.  相似文献   

3.
Previous work found that dietary l-arginine alters symptom progression in mice transgenic for Huntington’s disease (HD), and that cerebral blood flow (CBF) is abnormal in early stage HD patients. Both of these findings potentially implicate nitric oxide (NO) and its converting enzyme, nitric oxide synthase (NOS), in HD. The current experiment found that both NOS enzymatic activity and neuronal NOS (nNOS) protein expression were reduced (P<0.05) in R6/2 HD transgenic mice compared to non-HD controls (CON). Conversely, inducible NOS (iNOS) protein expression was not significantly different between groups. The changes in nNOS were accompanied by changes in protein expression of calmodulin kinase II (CaMKII) (P<0.05) and calmodulin kinase IV (CaMKIV) (P<0.05). Protein expression of 3-nitrotyrosine (3-NT), a marker for the neurotoxin peroxynitrite, was slightly increased in non-drug treated HD and was accompanied by increased immunostaining of 3-NT in cells adhering to the vasculature and choroid plexus. Mice that received the broad-spectrum NOS inhibitor Ng-nitro- -arginine methyl ester hydrochloride ( -NAME) via their drinking water had reduced NOS enzyme activity. NOS activity varied as a function of -NAME dose, was virtually eliminated in the 500-mg/l groups, and correlated (P<0.05) with the behavioral scores as revealed by regression and correlation analyses. High dose -NAME (500 mg/l) accelerated symptom onset in HD transgenics. These results support the hypothesis that nNOS activity and NO production are abnormal in HD, this in the setting of a more global dysregulation of calcium protein expression. Taken collectively with earlier data from our laboratory demonstrating abnormal CBF findings in early-stage HD patients, these results suggest that abnormalities in NOS function may significantly contribute to the neurodegeneration found in HD.  相似文献   

4.
5.
Huntington's disease (HD) is the most prevalent polyglutamine expansion disorder. HD is caused by an expansion of CAG triplet in the huntingtin (HTT) gene, associated with striatal and cortical neuronal loss. Central and peripheral metabolic abnormalities and altered insulin-like growth factor-1 (IGF-1) levels have been described in HD. Thus, we hypothesized that restoration of IGF-1-mediated signaling pathways could rescue R6/2 mice from metabolic stress and behavioral changes induced by polyglutamine expansion. We analyzed the in vivo effect of continuous peripheral IGF-1 administration on diabetic parameters, body weight and motor behavior in the hemizygous R6/2 mouse model of HD. We used 9 week-old and age-matched wild-type mice, subjected to continuously infused recombinant IGF-I or vehicle, for 14 days. IGF-1 treatment prevented the age-related decrease in body weight in R6/2 mice. Although blood glucose levels were higher in R6/2 mice, they did not reach a diabetic state. Even though, IGF-1 ameliorated poor glycemic control in HD mice. This seemed to be associated with a decrease in blood insulin levels in R6/2 mice, which was increased following IGF-1 infusion. Similarly, blood IGF-1 levels decreased during aging in both wild-type and R6/2 mice, being significantly improved upon its continuous infusion. Although no significant differences were found in motor function in R6/2-treated mice, IGF-1 treatment highly improved paw clasping scores. In summary, these results suggest that IGF-1 has a protective role against HD-associated impaired glucose tolerance, by enhancing blood insulin levels.  相似文献   

6.
Central nervous system (CNS) inflammatory processes including microglial activation have been implicated in the pathogenesis of neurodegenerative diseases such as Huntington Disease (HD). We report age-dependent changes in striatal microglial morphology and vasculature in the YAC128 mouse model of HD. Decreases in microglial ramification along with a decrease in vessel diameter and increased vessel density and length suggest the presence of microgliosis and proangiogenic activity in YAC128 mice. Our hypothesis for this study was that the changes in microglial morphology and perturbations in vasculature may be involved in the pathogenesis of HD and that peripheral challenge with the bacterial endotoxin, lipopolysaccharide (LPS), will exacerbate these microglial and vascular changes as well as the HD phenotype in YAC128 mice at 12 months. Chronic peripheral LPS (1 mg/kg) potentiated microglial activation indicated by an increase in microglial cell body size and retraction of processes. This potentiation in microglial activation with chronic peripheral LPS challenge was paralleled with vascular remodeling including dilatation, increased vessel wall thickness, increased BBB permeability and fibrinogen deposition in YAC128 striatum. Although peripheral LPS caused an increase in microglial activation and degenerative changes in cerebrovasculature, the phenotypic hallmarks of HD in YAC128 mice such as motor coordination deficits and decreased striatal volume were not exacerbated by chronic peripheral LPS exposure. This study identifies age-dependent increases in microglial activation and angiogenesis in YAC128 at 12 months. Peripheral inflammation induced by chronic LPS causes similar changes but does not influence the HD phenotype in YAC128 mice.  相似文献   

7.
Increased CBF velocity during word fluency in Huntington's disease patients   总被引:2,自引:0,他引:2  
1. This study examined the effects of word fluency and reading on cerebral blood flow in Huntington's disease (HD) patients. 2. Changes in cerebral flow velocity in the anterior (ACA) and middle (MCA) cerebral arteries were measured with functional transcranial Doppler ultrasonography (fTCD) in 13 normal controls and 9 gene positive HD patients. To control for motor effects of word fluency, two "control" conditions, including silent word fluency and a reading test, were also administered to all subjects. 3. Cerebral blood flow velocity was increased during the out loud word fluency test in the ACA, but not MCA, in the HD group compared to controls. This increase was due to motor components of the test, as during silent word fluency the HD group had a decrease in cerebral blood flow relative to controls. Significant correlations between blood flow in the ACA and word fluency test scores were found. Cerebral blood flow velocity during testing also was able to predict group assignment (i.e., control vs. mild HD vs. moderate HD). 4. These findings add to a growing body of literature suggesting that CBF velocity in HD is abnormal during cognitive and motor tasks. Although previous work reported that CBF velocity in HD is decreased during hand use on a maze test, the current experiment finds that speech production increases cerebral blood flow velocity in HD patients. Collectively, these results point to a fundamental disturbance in the regulation of CBF in HD. Mechanisms that could account for these findings, including the potential involvement of nitric oxide, are discussed.  相似文献   

8.
We previously investigated leptin levels in antipsychotic-induced weight gain and found that atypical antipsychotic, especially clozapine and olanzapine-induced weight gain is related to increased levels of leptin. It has been suggested that nitric oxide (NO) is a potential regulator of leptin-induced lipolysis. To explore the pathophysiology of weight gain during atypical antipsychotic treatment, we planned to investigate olanzapine's influence on leptin and NO levels and weight gain. The study comprised 21 patients with schizophrenia who were enrolled in olanzapine monotherapy, and 21 healthy controls. The fasting plasma NO and leptin levels were measured in both patients and controls at baseline. The patients were also evaluated at sixth week according to the Positive and Negative Syndrome Scale (PANSS), body mass index (BMI), weight, serum leptin and NO levels. At baseline, the mean leptin level in the olanzapine group was not different compared to that in controls after BMI or age adjustment. A significant increase in leptin levels by means of olanzapine use was seen (P<0.01). Higher plasma NO levels were observed in patients with schizophrenia compared with the control group at baseline (P<0.01). At the evaluation of week 6, a significant decrease in the mean plasma NO level was found in the olanzapine group (P<0.05). The changes in total PANSS scores were correlated with change in leptin levels (r=0.58, P<0.05), and with the change in weight (r=0.54, P<0.05). In addition, there was a severe significant negative correlation between the changes in leptin levels and NO levels (r=0.73, P<0.01). The results confirmed that leptin and NO might be associated with olanzapine-induced weight gain.  相似文献   

9.
There is a growing body of evidence suggesting that iron chelation may be a useful therapy in the treatment of Parkinson's Disease (PD). Experiments were designed to test the impact of dietary iron availability on the pathogenic process and functional outcome in a mouse model of PD. Mice were fed diets containing low (4 ppm) or adequate (48 ppm) amounts of iron for 6 weeks before the administration of MPTP, a mitochondrial toxin that damages nigrostriatal dopaminergic neurons and induces Parkinson-like symptoms. Low dietary iron increased serum total iron binding capacity (P < 0.001). Consistent with neuronal protection, iron restriction increased sphingomyelin C16:0 and decreased ceramide C16:0. However, there was a 35% decrease in striatal dopamine (DA) in iron-restricted mice. Motor behavior was also impaired in these animals. In vitro studies suggested that severe iron restriction could lead to p53-mediated neuronal apoptosis. Administration of MPTP reduced striatal DA (P < 0.01) and impaired motor behavior in iron-adequate mice. However, in iron-restricted mice, striatal dopamine levels and motor behavior were unchanged compared to saline-treated mice. Thus, while reduced iron may provide protection against PD-inducing insults such as MPTP, the role of iron in the synthesis of DA and neuronal survival should be considered, particularly in the development of iron-chelating agents to be used chronically in the clinical setting.  相似文献   

10.
We report that administration of paroxetine, a widely prescribed antidepressant drug that acts by inhibiting reuptake of the neurotransmitter serotonin, suppresses the neurodegenerative process and increases the survival of huntingtin mutant mice, an animal model of Huntington's disease (HD). Paroxetine attenuated motor dysfunction and body weight loss and improved glucose metabolism in the HD mice. Paroxetine was beneficial when treatment was initiated before or after the onset of motor dysfunction, suggesting a potential for such antidepressant drugs in the treatment of presymptomatic and symptomatic HD patients.  相似文献   

11.
Traumatic brain injury (TBI) results in reduced cerebral blood flow (CBF) and low levels of the vasodilator nitric oxide (NO) may be involved. Arginase II negatively regulates NO production through competition for the substrate -arginine. We determined whether arginase II-deficient (ArgII−/−) mice would show improved CBF after TBI through arterial spin-labeling magnetic resonance imaging (MRI). The ArgII−/− mice exhibit a significantly improved CBF recovery after trauma in the perilesional brain (P=0.0015) and in various other brain regions. In conclusion, arginase II deficiency leads to a better CBF recovery after TBI and implicates arginase II in hemodynamic processes.  相似文献   

12.
It has frequently been suggested that body weight or fat somehow exerts an inhibitory influence on food intake in a way that acts to maintain a stable body weight or fat. The principal evidence supporting this idea is that animals that have been induced to overeat and become overweight by various means, eat less than control rats when they are permitted to eat freely. If the degree of suppression of appetite by overweight is as large as several experiments suggest, then dietary hyperphagia should be self-limiting. Any overeating induced by dietary treatments should disappear after animals become moderately overweight. Animals fed some kinds of hyperhagia-promoting diets do show this pattern. However, animals fed other kinds of diets do not show this pattern, and with most diets, dietary hyperphagia continues for extended periods. This implies that either 1) overweight does not suppress appetite as much as suggested by various authorities, 2) dietary manipulations can override normal regulatory mechanisms, or 3) certain diets induce irreversible changes in body fat that are not evident from changes in body weight.  相似文献   

13.
Growth factors possess neuroprotective and neurotrophic properties in vitro, but few have been extensively studied in vivo after stroke. In the present study, we investigated the potential functional benefits of granulocyte colony-stimulating factor (G-CSF) administration after focal cerebral ischemia. Male mice underwent 60-minute middle cerebral artery occlusion (MCAO) and received G-CSF (50 microg/kg, subcutaneously) or vehicle (saline) at the onset of reperfusion. Granulocyte colony-stimulating factor-treated mice killed at 48 hours after MCAO revealed a >45% reduction (P<0.05) in lesion volume. In terms of body weight recovery, and in tests of motor (grid test and rotarod) and cognitive ability (water maze), MCAO significantly worsened the outcome in vehicle-treated mice as compared with shams (P<0.05). However, G-CSF treatment was beneficial as, compared with vehicle, this significantly improved weight recovery and motor ability. This effect was most apparent on the water maze where G-CSF-treated mice were indistinguishable from shams in terms of acquiring the task. These results indicate long-term beneficial effects of a single dose of G-CSF administered on reperfusion, and illustrate the need to further investigate the mechanisms of G-CSF action.  相似文献   

14.
Activation flow coupling (AFC), changes in cerebral blood flow (CBF) due to changes in neural activity with functional stimulation, provides the physiological basis of many neuroimaging techniques. Hypercapnia leads to an increase in CBF while neural activity remains unaffected. Laser Doppler (LD) flowmetry was used to measure CBF changes (LD(CBF)) in the somatosensory cortex due to periodic electrical forepaw stimulation (4 s in duration) before and during graded hypercapnia (3% CO(2), 5% CO(2) and 10% CO(2)). With increasing CO(2) concentrations, the baseline LD(CBF) progressively increased. The peak height (PH) of the LD(CBF) response, expressed as a percent change from the observed baseline for each hypercapnic state, significantly decreased (P<0.05) with increasing CO(2) concentrations. However, the absolute magnitude of the LD(CBF) change was independent of CO(2) concentration. The temporal dynamics of the LD(CBF) response during hypercapnia were significantly prolonged compared to baseline conditions (P<0.05).  相似文献   

15.
Huntington’s disease (HD) is a fatal neurodegenerative disorder characterized by motor, cognitive and psychiatric symptoms. Here, we show that R6/1 (HD) mice have deficits in short-term hippocampal-dependent memory prior to onset of motor symptoms. HD mice also exhibit impaired performance on a test of long-term spatial memory, however, environmental enrichment enhanced spatial learning and significantly ameliorated this memory deficit in HD mice. Analysis of the presynaptic vesicle protein synaptophysin showed no differences between standard-housed wild-type and HD littermates, however, enrichment increased synaptophysin levels in the frontal cortex and hippocampus in both groups. In comparison, analysis of postsynaptic proteins revealed that HD animals show decreased levels of PSD-95 and GluR1, but no change in levels of gephyrin. Furthermore, at 12 weeks of age when we observe a beneficial effect of enrichment on spatial learning in HD mice, enrichment also delays the onset of a deficit in hippocampal PSD-95 levels. Our results show that cognitive deficits in HD mice can be ameliorated by environmental enrichment and suggest that changes in synaptic composition may contribute to the cognitive alterations observed.  相似文献   

16.
Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice   总被引:1,自引:0,他引:1  
Cerebral cortical blood flow (CBF) was measured autoradiographically in conscious mice without the monoamine oxidase B (MAOB) gene (KO, n=11) and the corresponding wild-type animals (WILD, n=11). Subgroups of animals of each genotype received a continuous intravenous infusion over 30 min of phenylethylamine (PEA), an endogenous substrate of MAOB, (8 nmol g-1 min-1 in normal saline at a volume rate of 0.11 microl g-1 min-1) or saline at the same volume rate. Maps of relative CBF distribution showed predominance of midline motor and sensory area CBF in KO mice over WILD mice that received saline. PEA enhanced CBF in lateral frontal and piriform cortex in both KO and WILD mice. These changes may reflect a differential activation due to chronic and acute PEA elevations on motor and olfactory function, as well as on the anxiogenic effects of this amine. In addition to its effects on regional CBF distribution, PEA decreased CBF globally in KO mice (range -31% to -41% decrease from control levels) with a lesser effect in WILD mice. It is concluded that MAOB may normally regulate CBF distribution and its response to blood PEA.  相似文献   

17.
Mechanisms responsible for the pulsatile release of gonadotrophin secretion in prepubertal heifers are not fully known. We have shown that an excitatory amino acid agonist, N-Methyl-D,L-aspartic acid (NMA), induces an immediate release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) in prepubertal heifers. Nitric oxide (NO) has also emerged as an important regulator of LH release in rats. This study was designed to test the role of NO in the regulation of gonadotrophin release as well as the possible mediation by NO of the effects of NMA and gonadotrophin releasing hormone (GnRH) on gonadotrophin secretion in heifer calves. In experiment 1, four groups of five prepubertal heifers (33 weeks old) received one of the following treatments: (1); N-G-nitro-L-arginine methyl ester (L-NAME, a NO synthase inhibitor, 35 mg/kg, i.v., once); (2) NMA (4.7 mg/kg, i.v., once); (3) L-NAME+NMA (as above); and (4) Vehicle (saline, i.v.). All heifers in all groups were also challenged with a bolus injection of GnRH (10 ng/kg, i.v., once). Blood samples were collected every 15 min for 10 h. L-NAME was injected after the first blood sample, NMA after 2 h and GnRH after 6 h of blood sampling. Administration of L-NAME alone, suppressed the spontaneous pulses of LH (P<0.04). Heifers in the NMA group responded with a significantly greater LH release than did the heifers in the L-NAME+NMA group (P<0.05). Following the GnRH challenge, heifer calves treated with L-NAME or NMA had higher LH pulse responses than the controls (P<0.05). In a second experiment, four groups of five heifer calves (34 weeks old) were given one of the following treatments: (1) L-NAME (as above); (2) L-arginine, a NO precursor (ARG, 100 mg/kg/h, i.v. drip infused for 6 h starting 2 h after first blood sample was taken); (3) L-NAME+ARG (as above); and (4) Vehicle (saline i.v. bolus and drip for 6 h). Blood samples were taken every 10 min for 8 h. Administration of L-NAME suppressed the pulsatile release of LH and FSH (P<0.05). Compared to the control group, infusion of ARG by itself did not change the pattern of LH secretion (P>0.05); however, in heifers given L-NAME, ARG restored a normal pattern of LH pulses, similar to the control values (P>0.05). It was therefore concluded that NO is involved in the regulation of LH, and possibly FSH, secretion and that NO may mediate, at least in part, the stimulatory effects of NMA on LH, and to some extent FSH, release. The responses to GnRH led us to suggest that NO may have inhibitory effects on the pituitary and NMA may have increased pituitary sensitivity to GnRH.  相似文献   

18.
The endothelial surface layer (glycocalyx) of cerebral capillaries may increase resistance to blood flow. This hypothesis was investigated in mice by intravenous administration of heparinase (2500 IU/kg body weight in saline), which cleaves proteoglycan junctions of the glycocalyx. Morphology was investigated by transmission electron microscopy. Cerebral perfusion velocity was recorded before and during heparinase or saline treatment using laser-Doppler flowmetry. In addition, cerebral blood flow (CBF) was measured 10 minutes after heparinase or saline treatment using the iodo[14C]antipyrine method. Laser-Doppler flowmetry and CBF measurements were performed during normocapnia and severe hypercapnia (PCO2: 120 mm Hg). After heparinase, morphology showed a reduced thickness of the glycocalyx in cortical microvessels by 43% (P < 0.05) compared with saline-treated controls. Under normocapnic conditions, a 15% (P < 0.05) transient increase of cerebral flow velocity occurred 2.5 to 5 minutes after heparinase injection. Laser-Doppler flow and CBF returned to control values ten minutes after the injection. However, during severe hypercapnia, heparinase treatment resulted in a persisting increase in laser-Doppler flow (6%, P < 0.05) and CBF (30%, P < 0.05). These observations indicate the existence of a flow resistance in cerebral capillaries exerted by the glycocalyx. The transient nature of the CBF increase during normocapnia may be explained by a vascular compensation that is exhausted during severe hypercapnia.  相似文献   

19.
Huntington’s disease (HD) is a neurodegenerative disease caused by a CAG triplet repeat expansion in the Huntingtin gene. Metabolic and microvascular abnormalities in the brain may contribute to early physiological changes that subserve the functional impairments in HD. This study is intended to investigate potential abnormality in dynamic changes in cerebral blood volume (CBV) and cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2) in the brain in response to functional stimulation in premanifest and early manifest HD patients. A recently developed 3-D-TRiple-acquisition-after-Inversion-Preparation magnetic resonance imaging (MRI) approach was used to measure dynamic responses in CBV, CBF, and CMRO2 during visual stimulation in one single MRI scan. Experiments were conducted in 23 HD patients and 16 healthy controls. Decreased occipital cortex CMRO2 responses were observed in premanifest and early manifest HD patients compared to controls (P < 0.001), correlating with the CAG-Age Product scores in these patients (R2 = 0.4, P = 0.001). The results suggest the potential value of this reduced CMRO2 response during visual stimulation as a biomarker for HD and may illuminate the role of metabolic alterations in the pathophysiology of HD.  相似文献   

20.
Local cerebral blood flow (CBF) responses to neuronal activity are essential for cognition and impaired CBF responses occur in Alzheimer’s disease (AD). In this study, regional CBF (rCBF) responses to the KATP channel opener diazoxide were investigated in 3xTgAD, WT and mutant Presenilin 1(PS1M146V) mice from three age groups using Laser-Doppler flowmetry. The rCBF response was reduced early in young 3xTgAD mice and almost absent in old 3xTgAD mice, up to 30%–40% reduction with altered CBF velocity and mean arterial pressure versus WT mice. The impaired rCBF response in 3xTgAD mice was associated with progression of AD pathology, characterized by deposition of intracellular and vascular amyloid-β (Aβ) oligomers, senile plaques and tau pathology. The nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine abolished rCBF response to diazoxide suggesting NO was involved in the mediation of vasorelaxation. Levels of phosphor-eNOS (Ser1177) diminished in 3xTgAD brains with age, while the rCBF response to the NO donor sodium nitroprusside remained. In PS1M146V mice, the rCBF response to dizoxide reduced and high molecular weight Abeta oligomers were increased indicating PS1M146V contributed to the dysregulation of rCBF response in AD mice. Our study revealed an Aβ oligomer-associated compromise of cerebrovascular function in rCBF response to diazoxide in AD mice with PS1M146V mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号