首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Treatment of tuberculosis (TB) is a challenge because of multidrug‐resistant and extremely drug‐resistant strains of Mycobacterium tuberculosis. Plant species contain antimicrobial compounds that may lead to new anti‐TB drugs. Previous screening of some tree species from the Anacardiaceae family revealed the presence of antimicrobial activity, justifying further investigations. Leaf extracts of 15 Anacardiaceae tree species were screened for antimycobacterial activity using a twofold serial microdilution assay against the pathogenic Mycobacterium bovis and multidrug resistant M. tuberculosis and rapidly growing mycobacteria, Mycobacterium smegmatis, Mycobacterium fortuitum and Mycobacterium aurum. The vaccine strain, M. bovis and an avirulent strain, H37Ra M. tuberculosis, were also used. Cytotoxicity was assessed using a colorimetric assay against Vero kidney, human hepatoma and murine macrophage cells. Four out of 15 crude acetone extracts showed significant antimycobacterial activity with minimum inhibitory concentration varying from 50 to 100 µg/mL. Searsia undulata had the highest activity against most mycobacteria, followed by Protorhus longifolia. M. fortuitum was the strongest predictor of activity against multidrug‐resistant TB (correlation coefficient = 0.65). Bioautography against M. aurum and M. fortuitum worked well as indicators of the Rf values of active compounds yielding strong zones of inhibition. The leaf extracts of S. undulata and P. longifolia had more than ten different antimycobacterial compounds and had low cytotoxicity with LC50 values above 100 µg/mL. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Seven ethnobotanically selected medicinal plants were screened for their antimycobacterial activity. The minimum inhibitory concentration (MIC) of four plants namely Artemisia afra, Dodonea angustifolia, Drosera capensis and Galenia africana ranged from 0.781 to 6.25 mg/mL against Mycobacterium smegmatis. G. africana showed the best activity exhibiting an MIC of 0.78 mg/mL and a minimum bactericidal concentration (MBC) of 1.56 mg/mL. The MICs of ethanol extracts of D. angustifolia and G. africana against M. tuberculosis were found to be 5.0 and 1.2 mg/mL respectively. The mammalian cytotoxicity IC(50) value of the most active antimycobacterial extract, from G. africana, was found to be 101.3 microg/mL against monkey kidney Vero cells. Since the ethanol G. africana displayed the best antimycobacterial activity, it was subjected to fractionation which led to the isolation of a flavone, 5,7,2'-trihydroxyflavone. The MIC of this compound was found to be 0.031 mg/mL against M. smegmatis and 0.10 mg/mL against M. tuberculosis. This study gives some scientific basis to the traditional use of these plants for TB-related symptoms.  相似文献   

3.
With tuberculosis the leading bacterial killer worldwide and other mycobacterial diseases on the increase, the search for new antimycobacterial agents is timely. In this study, extracts from plants, lichens and fungal endophytes of Scottish provenance were screened for activity against Mycobacterium aurum and M. tuberculosis H37Rv. The best activity against M. aurum was observed for extracts of Juniperus communis roots and Cladonia arbuscula (MIC = 4 µg/mL), and a fungal endophyte isolated from Vaccinium myrtillus (MIC = 8 µg/mL). The best activity against M. tuberculosis was observed for extracts of C. arbuscula, Empetrum nigrum, J. communis roots, Calluna vulgaris aerial parts, Myrica gale roots and stems (93 to 99% inhibition at 100 µg/mL). Potent antitubercular activity (90 to 96% inhibition at 100 µg/mL) was also observed for the ethanol extracts of Xerocomus badius, Chalciporus piperatus, Suillus luteus and of endophytes isolated from C. vulgaris, E. nigrum, Vaccinium vitis‐idaea and V. myrtillus. The results obtained this study provide, in part, some scientific basis for the traditional use of some of the selected plants in the treatment of tuberculosis. They also indicate that fungal endophytes recovered from Scottish plants are a source of antimycobacterial agents worthy of further investigation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Multi‐drug resistant Mycobacterium tuberculosis and other bacterial pathogens represent a major threat to human health. In view of the critical need to augment the current drug regime, we have investigated therapeutic potential of five quinonoids, viz. emodin, diospyrin, plumbagin, menadione and thymoquinone, derived from natural products. The antimicrobial activity of quinonoids was evaluated against a broad panel of multi‐drug and extensively drug‐resistant tuberculosis (M/XDR‐TB) strains, rapid growing mycobacteria and other bacterial isolates, some of which were producers of β‐lactamase, Extended‐spectrum β‐lactamase (ESBL), AmpC β‐lactamase, metallo‐beta‐lactamase (MBL) enzymes, as well as their drug‐sensitive ATCC counterparts. All the tested quinones exhibited antimycobacterial and broad spectrum antibacterial activity, particularly against M. tuberculosis (lowest MIC 0.25 µg/mL) and Gram‐positive bacteria (lowest MIC <4 µg/mL) of clinical origin. The order of antitubercular activity of the tested quinonoids was plumbagin > emodin ~ menadione ~ thymoquinone > diospyrin, whereas their antibacterial efficacy was plumbagin > menadione ~ thymoquinone > diospyrin > emodin. Furthermore, this is the first evaluation performed on these quinonoids against a broad panel of drug‐resistant and drug‐sensitive clinical isolates, to the best of our knowledge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号