首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin, a natural plant extract from Curcuma longa, is known for its anti‐carcinogenic and chemopreventive effects on a variety of experimental cancer models. In this study, we evaluated the effects of curcumin and elucidated its mechanism in human colorectal carcinoma cells. Cell viability assay showed that curcumin significantly inhibited the growth of LoVo cells. Curcumin treatment induced the apoptosis accompanied by ultra‐structural changes and release of lactate dehydrogenase in a dose‐dependent manner. Moreover, treatment with 0–30 µg/mL curcumin decreased the mitochondrial membrane potential and activated the caspase‐3 and caspase‐9 in a dose‐ and time‐dependent manner. Nuclear and annexin V/PI staining showed that curcumin induced the apoptosis of LoVo cells. FACS analysis revealed that curcumin could induce the cell cycle arrest of LoVo cells at the S phase. Furthermore, western blotting analysis indicated that curcumin induced the release of cytochrome c, a significant increase of Bax and p53 and a marked reduction of Bcl‐2 and survivin in LoVo cells. Taken together, our results suggested that curcumin inhibited the growth of LoVo cells by inducing apoptosis through a mitochondria‐mediated pathway. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Apoptosis and autophagy are important processes that control cellular homeostasis and have been highlighted as promising targets for novel anticancer drugs. This study aims to investigate the inhibitory effects and mechanisms of Neferine (Nef), an alkaloid from the lotus seed embryos of Nelumbo nucifera (N. nucifera), as a dual inducer of apoptosis and autophagy through the reactive oxygen species (ROS) activation in cervical cancer cells. Nef and N. nucifera extract suppressed the cell viability of HeLa and SiHa cells in a dose‐dependent manner. Importantly, Nef showed minimal toxicity to normal cells. Furthermore, Nef inhibited anchorage‐independent growth, colony formation and migration ability of cervical cancer cells. Nef induces mitochondrial apoptosis by increasing pro‐apoptotic protein bax, cytochrome‐c, cleaved caspase‐3 and caspase‐9, poly‐ADP ribose polymerase (PARP) cleavage, DNA damage (pH2AX) while downregulating Bcl‐2, procaspase‐3 and procaspase‐9, and TCTP. Of note, apoptotic effect by Nef was significantly attenuated in the presence of N‐acetylcysteine (NAC), suggesting pro‐oxidant activity of this compound. Nef also promoted autophagy induction through increasing beclin‐1, atg‐4, atg‐5 and atg‐12, LC‐3 activation, and P62/SQSTM1 as determined by western blot analysis. Collectively, these results demonstrate that Nef is a potent anticancer compound against cervical cancer cells through inducing apoptosis and autophagic pathway involving ROS.  相似文献   

3.
Xanthorrhizol, a natural sesquiterpenoid compound isolated from Curcuma xanthorrhiza Roxb, has been known to inhibit the growth of human colon, breast, liver and cervical cancer cells. In this study, xanthorrhizol decreased cell viability, induced apoptosis and decreased the level of full‐length PARP in SCC‐15 oral squamous cell carcinoma (OSCC) cells. A decrease in cell viability and PARP degradation was not prevented by treatment with the caspase inhibitor Z‐VAD‐fmk in xanthorrhizol‐treated cells. Xanthorrhizol treatment elevated intracellular Ca2+ and ROS levels in SCC‐15 cells. Treatment with a Ca2+ chelator, EGTA/AM, did not affect xanthorrhizol‐ induced cytotoxicity, but cell viability was partly recovered by treatment with endogenous antioxidant, GSH, or hydroxy radical trapper, MCI‐186. Furthermore, the viability of xanthorrhizol‐treated SCC‐15 cells was significantly restored by treatment with SB203580 and/or SP600125 but not significantly by PD98059 treatment. Xanthorrhizol‐induced activation of p38 MAPK and JNK was blocked by MCI‐186. Finally, xanthorrhizol suppressed the number of tumors in buccal pouches and increased the survival rate in hamsters treated with 7,12‐dimethylbenz[a]anthracene. In conclusion, xanthorrhizol may induce caspase‐independent apoptosis through ROS‐mediated p38 MAPK and JNK activation in SCC‐15 OSCC cells and prevent chemical‐induced oral carcinogenesis. Therefore, xanthorrhizol seems to be a promising chemopreventive agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Curcumin can decrease viable cells through the induction of apoptosis in human lung cancer NCI‐H460 cells in vitro. However, there are no reports that curcumin can inhibit cancer cells in vivo. In this study, NCI‐H460 lung tumour cells were implanted directly into nude mice and divided randomly into four groups to be treated with vehicle, curcumin (30 mg/kg of body weight), curcumin (45 mg/kg of body weight) and doxorubicin (8 mg/kg of body weight). Each agent was injected once every 4 days intraperitoneally (i.p.), with treatment starting 4 weeks after inoculation with the NCI‐H460 cells. Treatment with 30 mg/kg and 45 mg/kg of curcumin or with 8 mg/kg of doxorubicin resulted in a reduction in tumour incidence, size and weight compared with the control group. The findings indicate that curcumin can inhibit tumour growth in a NCI‐H460 xenograft animal model in vivo. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
目的 探讨姜黄素与奥沙利铂联用对人结肠癌LoVo细胞株裸鼠移植瘤生长的影响及其作用机制.方法 将LoVo细胞接种子裸鼠皮下,制备裸鼠移植瘤模型.将造模成功的裸鼠随机分为对照组、姜黄素50 mg/kg组、奥沙利铂25 mg/kg组、姜黄素50 mg/kg+奥沙利铂25 mg/kg联合给药组,给药组裸鼠隔天ip给药1次,连续给药11次.末次给药后剥离瘤块称质量,计算移植瘤体积、抑瘤率;摘除眼球取血,检测血常规及肝、肾功能;流式细胞仪检测肿瘤细胞周期和凋亡率;HE染色分析肿瘤组织病理形态学;RT-PCR检测细胞凋亡相关基因的表达.结果 姜黄素组、奥沙利铂组、联合用药组的抑瘤率分别为59.47%、55.49%、70.56%,联合给药组抑制肿瘤生长的作用显著且对荷瘤裸鼠血液及肝肾无明显毒性;联合给药组可显著阻滞肿瘤细胞于S期和G2/M期,显著上调bax基因的表达.结论 姜黄素联合奥沙利铂可显著抑制LoVo细胞裸鼠移植瘤的生长.  相似文献   

6.
Although auraptene, a prenyloxy coumarin from Citrus species, was known to have anti‐oxidant, anti‐bacterial, antiinflammatory, and anti‐tumor activities, the underlying anti‐tumor mechanism of auraptene in prostate cancers is not fully understood to date. Thus, in the present study, we have investigated the anti‐tumor mechanism of auraptene mainly in PC3 and DU145 prostate cancer cells, because auraptene suppressed the viability of androgen‐independent PC3 and DU145 prostate cancer cells better than androgen‐sensitive LNCaP cells. Also, auraptene notably increased sub‐G1 cell population and terminal deoxynucleotidyl transferase dUTP nick end labeling‐positive cells as features of apoptosis in two prostate cancer cells compared with untreated control. Consistently, auraptene cleaved poly(ADP‐ribose) polymerase, activated caspase‐9 and caspase‐3, suppressed the expression of anti‐apoptotic proteins, including Bcl‐2 and myeloid cell leukemia 1 (Mcl‐1), and also activated pro‐apoptotic protein Bax in both prostate cancer cells. However, Mcl‐1 overexpression reversed the apoptotic effect of auraptene to increase sub‐G1 population and induce caspase‐9/3 in both prostate cancer cells. Taken together, the results support scientific evidences that auraptene induces apoptosis in PC3 and DU145 prostate cancer cells via Mcl‐1‐mediated activation of caspases as a potent chemopreventive agent for prostate cancer prevention and treatment. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Galbanic acid (GBA), a major compound of Ferula assafoetida, was known to have cytotoxic, anti‐angiogenic and apoptotic effects in prostate cancer and murine Lewis lung cancer cells; the underling apoptotic mechanism of GBA still remains unclear so far. Thus, in the present study, the apoptotic mechanism of GBA was investigated mainly in H460 non‐small cell lung carcinoma (NSCLC) cells because H460 cells were most susceptible to GBA than A549, PC‐9 and HCC827 NSCLC cells. Galbanic acid showed cytotoxicity in wild EGFR type H460 and A549 cells better than other mutant type PC‐9 and HCC827 NSCLC cells. Also, GBA significantly increased the number of Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells and sub G1 population in H460 cells. Western blotting revealed that GBA cleaved poly (ADP‐ribose) polymerase (PARP), activated Bax and caspase 9, attenuated the expression of Bcl‐2, Bcl‐xL, and Myeloid cell leukemia 1 (Mcl‐1) in H460 cells. However, interestingly, overexpression of Mcl‐1 blocked the ability of GBA to exert cytotoxicity, activate caspase9 and Bax, cleave PARP, and increase sub G1 accumulation in H460 cells. Overall, these findings suggest that GBA induces apoptosis in H460 cells via caspase activation and Mcl‐1 inhibition in H460 cells as a potent anticancer agent for NSCLC treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
6‐Hydroxydopamine (6‐OHDA) selectively enters dopaminergic neurons and undergoes auto‐oxidation resulting in the generation of reactive oxygen species and dopamine quinones, subsequently leading to apoptosis. This mechanism mimics the pathogenesis of Parkinson's disease and has been used to induce experimental Parkinsonism in both in vitro and in vivo systems. In this study, we investigated the effects of curcumin I (diferuloylmethane) purified from Curcuma longa on quinoprotein production, phosphorylation of p38 MAPK (p‐p38), and caspase‐3 activation in 6‐OHDA‐treated SH‐SY5Y dopaminergic cells. Pretreatment of SH‐SY5Y with curcumin I at concentrations of 1, 5, 10, and 20 μM, significantly decreased the formation of quinoprotein and reduced the levels of p‐p38 and cleaved caspase‐3 in a dose‐dependent manner. Moreover, the levels of the dopaminergic neuron marker, phospho‐tyrosine hydroxylase (p‐TH), were also dose‐dependently increased upon treatment with curcumin I. Our results clearly demonstrated that curcumin I protects neurons against oxidative damage, as shown by attenuation of p‐p38 expression, caspase‐3‐activation, and toxic quinoprotein formation, together with the restoration of p‐TH levels. This study provides evidence for the therapeutic potential of curcumin I in the chemoprevention of oxidative stress‐related neurodegeneration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Although Ocimum sanctum has been used extensively for its medicinal values in India and China, its antitumor activity against human nonsmall cell lung carcinoma (NSCLC) A549 cells has not been investigated until now. Therefore, the antitumor mechanism of ethanol extracts of Ocimum sanctum (EEOS) was elucidated in A549 cells in vitro and the Lewis lung carcinoma (LLC) animal model. EEOS exerted cytotoxicity against A549 cells, increased the sub‐G1 population and exhibited apoptotic bodies in A549 cells. Furthermore, EEOS cleaved poly(ADP‐ribose)polymerase (PARP), released cytochrome C into cytosol and simultaneously activated caspase‐9 and ‐3 proteins. Also, EEOS increased the ratio of proapoptotic protein Bax/antiapoptotic protein Bcl‐2 and inhibited the phosphorylation of Akt and extracellular signal regulated kinase (ERK) in A549 cancer cells. In addition, it was found that EEOS can suppress the growth of LLC inoculated onto C57BL/6 mice in a dose‐dependent manner. Overall, these results demonstrate that EEOS induces apoptosis in A549 cells via a mitochondria caspase dependent pathway and inhibits the in vivo growth of LLC, suggesting that EEOS can be applied to lung carcinoma as a chemopreventive candidate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Cyperus rotundus (Cyperaceae) has been widely used in traditional medicine for the treatment of various diseases, including cancer. Although an anti‐tumour effect has been suggested for C. rotundus, the anti‐tumour effects and underlying molecular mechanisms of its bioactive compounds are poorly understood. The n‐hexane fraction of an ethanol extract of C. rotundus rhizomes was found to inhibit cell growth in ovarian cancer (A2780, SKOV3 and OVCAR3) and endometrial cancer (Hec1A and Ishikawa) cells. Among the thirteen sesquiterpenes isolated from the n‐hexane fraction, some patchoulane‐type compounds, but not eudesmane‐type compounds, showed moderate cytotoxic activity in human ovarian cancer cells. In particular, the patchoulane sesquiterpene 6‐acetoxy cyperene had the most potent cytotoxicity. In this regard, propidium iodide/Annexin V staining and terminal deoxynucleotidyl transferase dUTP (deoxynucleotide triphosphate) nick end labeling assay were performed to study cell cycle progression and apoptosis. 6‐acetoxy cyperene induced apoptosis, as shown by the accumulation of sub‐G1 and apoptotic cells. Furthermore, treatment with 6‐acetoxy cyperene stimulated the activation of caspase‐3, caspase‐8 and caspase‐9 and poly(ADP‐ribose)polymerase in a dose‐dependent manner. Pretreatment with caspase inhibitors neutralized the pro‐apoptotic activity of 6‐acetoxy cyperene. Taken together, these data suggest that 6‐acetoxy cyperene, a patchoulane‐type sesquiterpene isolated from C. rotundus rhizomes, is an anti‐tumour compound that causes caspase‐dependent apoptosis in ovarian cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
It has been demonstrated that many flavonoids possess a potent and broad spectrum of antitumor activity. Liquiritigenin is a flavanone extracted from Glycyrrhizae. This study investigated the effects of liquiritigenin on cell viability and apoptosis induction in human cervical carcinoma (HeLa) cells. The results show that liquiritigenin significantly suppressed cell proliferation in a dose‐ and time‐dependent manner in HeLa cells. In addition, liquiritigenin promoted apoptosis in HeLa cells, evidenced by apoptotic morphological changes and Annexin‐V binding. The apoptosis induction with liquiritigenin is associated with the up‐regulation of p53 and Bax, along with down‐regulation of Bcl‐2 and survivin. Finally, examination of the mitochondrial pathway of apoptosis revealed that cytochrome c is released from mitochondria to cytosol, associated with the activation of caspase‐9 and ‐3, and the cleavage of poly (ADP‐ribose) polymerase (PARP). Overall, the results indicate that liquiritigenin induces apoptosis in part via the mitochondrial pathway, which is associated with p53 up‐regulation, release of cytochrome c and elevated activity of caspase‐9 and ‐3 in HeLa cells. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Polyphyllin VI (PVI) and polyphyllin VII (PVII) derived from Paris polyphylla possess anti‐cancer activities. However, the mechanisms for the anti‐lung cancer effects of PVI and PVII remain poorly understood. In this study, PVI and PVII exhibited inhibitory effects on the proliferation of A549 and NCI‐H1299 cells. PVI and PVII induced G2/M cell cycle arrest and triggered apoptosis. PVI and PVII upregulated the tumor suppressor protein p53 and downregulated cyclin B1. The two treatments significantly increased the expression levels of death receptor 3, death receptor 5, Fas, cleaved PARP, and cleaved caspase‐3. Furthermore, PVI and PVII significantly inhibited the growth of A549 cells in vivo. The tumor inhibitory rates of PVI were 25.74%, 34.62%, and 40.43% at 2, 3, and 4 mg/kg, respectively, and those of PVII were 25.63%, 41.71%, and 40.41% at 1, 2, and 3 mg/kg, respectively. Finally, PVI and PVII regulated the expression of proteins related to the apoptotic pathway in A549 xenografts. In summary, PVI and PVII exhibited strong inhibitory effects on lung cancer cell growth in vitro and in vivo by inducing G2/M cell cycle arrest and triggering apoptosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Anticancer activities of p‐menth‐1‐ene‐4,7‐diol (EC‐1) isolated from Eucalyptus camaldulensis Dhnh. were studied on Ehrlich ascites carcinoma (EAC) cells by MTT (3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyl tetrazolium bromide) assay. Anticancer activities also analyzed in EAC‐bearing mice by assessment of cancer growth inhibition, changes in cancer volume, changes in life span, and hematological parameters. Apoptosis was analyzed by fluorescence microscope, DNA fragmentation assay, and flow cytometry. The expression of apoptosis‐related genes, Bcl‐2, Bcl‐X, PARP‐1, p53, and Bax, were analyzed using polymerase chain reaction (PCR). EC‐1 significantly inhibited proliferation of EAC cells in vivo and restored the altered hematological parameters of EAC‐bearing mice. Cytological observation by fluorescence microscope showed apoptosis of EAC cells upon treatment with EC‐1. Also, DNA fragmentation assay revealed EAC cells' apoptosis following EC‐1 treatment. Increased mRNA expressions of p53 and Bax genes and negative expressions of Bcl‐2 and Bcl‐X were observed in cells treated with EC‐1. These findings confirmed the induction of apoptosis by EC‐1. In addition, MTT assay showed dose‐dependent anticancer activity of EC‐1 against EAC cell. Cell cycle analysis revealed that EC‐1 treatment caused suppression of EAC cells at S phase. To conclude, EC‐1 is a novel anticancer compound and showed antiproliferative and apoptotic activities in cellular and mice models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This study aimed to investigate the effects of harmine hydrochloride (HMH) on digestive tumor cells in vitro and its molecular mechanism. MTT assays showed that HMH inhibited the proliferation of some human cancer cell lines and had no obvious inhibitory effects on human LO2 cells. Flow cytometry assays showed that HMH trigged G2 phase arrest in MGC‐803 cells and SMMC‐7721 cells, while the expression of cyclin A, cyclin B, p21, Myt1, and p‐cdc2 (Tyr15) was upregulated. Flow cytometry assays also showed that the percentages of apoptotic cells were increased, the mitochondrial transmembrane potential (ΔΨm) decreased, and the cleavage of caspase‐9, caspase‐3, and poly (Adenosine diphosphate ribose) polymerase (PARP) were observed, the expression of Bad increased, phospho‐Bad (S112) decreased, pro‐caspase‐8 was cleaved, and Bid (22 kDa) was cleaved. The expression of p‐ERK decreased in both cells. In conclusion, these results demonstrated that HMH upregulates the expression of p21, activates Myt1 and inhibits cdc2 by phospho‐cdc2 (Y15), and triggers G2 phase arrest in both MGC‐803 cells and SMMC‐7721 cells. It can also activate the mitochondria‐related cell apoptosis pathway through the caspase‐8/Bid pathway, inhibiting the ERK/Bad pathway and promoting apoptosis in both of these two cell types. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
姜黄素诱导结肠癌LoVo细胞凋亡的作用及机制研究   总被引:4,自引:1,他引:3  
目的: 探讨姜黄素促人结肠癌LoVo细胞凋亡的生物学作用及其调控机制。 方法: 体外培养人结肠癌LoVo细胞,0~20 mg·L-1不同浓度姜黄素处理后,采用MTT 比色法测定姜黄素对细胞的增殖抑制作用,利用透射电镜观察细胞的超微结构,采用PI单标流式细胞仪测定细胞周期分布,Annexin V-FITC/PI双标法检测细胞凋亡率; 采用 RT-PCR检测Bax,Bcl-2,Caspase-3,Bcl-xL mRNA表达水平。 结果: MTT检测显示姜黄素能显著抑制人结肠癌LoVo细胞的生长、増殖,呈现浓度和时间效应关系;透射电镜结果显示姜黄素能使LoVo细胞发生形态学改变,呈现典型凋亡细胞特征;流式细胞仪分析显示姜黄素能阻滞细胞周期于S期,诱导细胞发生凋亡。RT-PCR检测显示姜黄素可促进细胞中Bax,Caspase-3 mRNA 表达,抑制Bcl-2,Bcl-xL mRNA 表达。 结论: 姜黄素能显著抑制人结肠癌LoVo细胞的增殖并促进其凋亡,这种生物学效应可能与激活Bax表达、抑制Bcl-2和Bcl-xL表达而活化Caspase-3的信号通路有关。  相似文献   

16.
Angelica gigas Nakai (AGN, Korean Dang‐gui) is traditionally used for the treatment of various diseases including cancer. Here, we investigated multidrug‐resistant phenotype‐reversal activities of AGN and its compounds (decursin, ferulic acid, and nodakenin) in doxorubicin‐resistant NCI/ADR‐RES ovarian cancer cells. Our results showed that a combination of doxorubicin with either AGN or decursin inhibited a proliferation of NCI/ADR‐RES cells. These combinations increased the number of cells at sub‐G1 phase when cells were stained with Annexin V‐fluorescein isothiocyanate. We also found that these combinations activated caspase‐9, caspase‐8, and caspase‐3 and increased cleaved PARP level. Moreover, an inhibition of P‐glycoprotein expression by either AGN or decursin resulted in a reduction of its activity in NCI/ADR‐RES cells. Therefore, our data demonstrate that decursin in AGN inhibits doxorubicin‐resistant ovarian cancer cell proliferation and induces apoptosis in the presence of doxorubicin via blocking P‐glycoprotein expression. Therefore, AGN would be a potentially novel treatment option for multidrug‐resistant tumors by sensitizing to anticancer agents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This study was designed to investigate the antitumor mechanism of Phytol in hepatocellular carcinomas including Huh7 and HepG2 cells in association with caspase dependent apoptosis and epithelial mesenchymal transition (EMT) signaling. Phytol significantly suppressed the viability of Huh7 and HepG2 cells. Also, Phytol significantly increased the sub G1 population and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) positive cells in a concentration dependent manner in Huh7 and HepG2 cells. Consistently, Phytol cleaved poly (adenosine diphosphate‐ribose) polymerase (PARP), activated caspase‐9/3, and Bax attenuated the expression of survival genes such as Bcl‐2, Mcl‐1, and c‐Myc in Huh7 and HepG2 cells. Of note, Phytol also suppressed typical morphology change of EMT such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in HepG2 cells. Furthermore, Phytol also reversed the loss of E‐cadherin and overexpression of p‐smad2/3, alpha‐smooth muscle actin, and Snail induced by EMT promoter transforming growth factor beta1 in HepG2 cells. Overall, our findings suggest that Phytol exerts antitumor activity via apoptosis induction through activation of caspas‐9/3 and inhibition of EMT in hepatocellular carcinoma cells as a potent anticancer candidate for liver cancer treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Nobiletin (5, 6, 7, 8, 3′ 4′‐hexamethoxyflavone) is a major anticancer component in juice from zhishi (Rutaceae). This study aimed to investigate the inhibitory effect of Nobiletin on hepatic cancer cells both in vitro and in vivo. The 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT), growth curve, and clonogenic assay showed that nobiletin inhibited the proliferation of SMMC‐7721 cells in vitro. Hoechst staining observed the characteristics of cell apoptosis in nobiletin‐treated cells, and the apoptotic rates of treated groups were increased in a dose‐dependent manner. Flow cytometric analysis demonstrated that nobiletin could block the cell cycle arrested at G2 phase. Cell cycle analysis was performed using flow cytometry. Results showed that cell cycle phase distribution analysis showed G2 arrest. It was found that nobiletin downregulated the expressions of Bcl‐2 and COX‐2 and up‐regulated the expressions of Bax and caspase‐3 in SMMC‐7721 cells by western blotting. The experiment in vivo demonstrated that nobiletin significantly inhibited the growth of H22 transplantable tumor, downregulated the expressions of COX‐2, up‐regulated the expressions of Bax and caspase‐3 detected by immunohistochemistry and western blotting, and the ratios of Bcl‐2/Bax were decreased. Our results suggest that nobiletin has significant inhibitory effects on hepatocellular carcinoma both in vitro and in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of the present study was to evaluate the antiproliferative effect of phenylpropanoids isolated from the n‐BuOH‐soluble fraction of an ethanolic extract of Lagotis brevituba Maxim. The phenylpropanoids were identified as echinacoside, lagotioside, glucopyranosyl(1–6)martynoside, plantamoside, and verbascoside. Three of the compounds, lagotioside, glucopyranosyl(1–6)martynoside, and plantamoside, were isolated from L. brevituba for the first time. The antiproliferative activity of the isolates was evaluated in human gastric carcinoma (MGC‐803), human colorectal carcinoma (HCT116), human hepatocellar carcinoma (HepG2), and human lung cancer (HCT116) cells using an 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. Plantamoside showed promising activity against MGC‐803 cells, with a half maximal inhibitory concentration value of 37.09 μM. The mechanism of the pro‐apoptosis effect of plantamoside was then evaluated in MGC‐803 cells. Changes in cell morphology, including disorganization of the architecture of actin microfilaments and formation of apoptotic bodies, together with cell cycle arrest in G2/M phases, were observed after treatment of plantamoside. The antiproliferative and pro‐apoptotic effects were associated with a decrease in the ratio of Bcl‐2/Bax and reduced mitochondrial membrane potential, which was accompanied by the release of reactive oxygen species and Ca2+ into the cytoplasm. Taken together, the results indicated that plantamoside promotes apoptosis via a mitochondria‐dependent mechanism. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Paeoniflorin (PF), the principal bioactive component in the paeony root, has been used alone or combined with other herbs for many years in traditional Chinese medicine. New studies have shown that PF possesses an antitumor effect. However, the effect of PF on human cervical cancer cells has not been reported previously. This study determined the effect of PF on human cervical cancer cell line (HeLa) cells by the methyl thiazolyl tetrazolium (MTT) assay, flow cytometry with annexin V‐fluorescein isothiocyanate (FITC)/propidium iodide (PI) technology, the transmission electron microscope (TEM) and immunocytochemical technique. After treatment with PF, the proliferation of HeLa cells was inhibited in a dose and time‐dependent manner (p < 0.05). The apoptosis rate of HeLa cells increased with ascending concentrations of PF (p < 0.05) and the proportion of HeLa cells in S phase showed an increasing trend also. Typical apoptotic changes of HeLa cells exposed to PF were seen under the TEM. Meanwhile, there was a decrease in the expression of Bcl‐2 and an enhancement in the expression of Bax and caspase‐3 genes compared with the control group (p < 0.05). In conclusion, PF can induce significantly the apoptosis of HeLa cells, which may be demonstrated by the down‐regulation of anti‐apoptosis gene Bcl‐2 and the up‐regulation of pro‐apoptosis genes Bax and caspase‐3. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号