首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We have previously demonstrated that high concentrations of nerve growth factor suppress neurite outgrowth from sensory neurons. Inhibition could be mediated by either the p75NTR or TrkA receptor. We used a functional block of p75NTR by REX antibody in rat dorsal root ganglion neurons and dorsal root ganglion cultures from p75NTR knockout mice. In both systems, high-dose NGF inhibited neurite outgrowth, implying that p75NTR is not involved in suppression of neurite outgrowth. Confocal images of dissociated dorsal root ganglion neurons exposed to fluorescence-tagged NGF showed ligand internalization. Radioligand binding indicated disappearance of high-affinity binding sites from the surface of dorsal root ganglia after treatment with 200 ng/ml NGF for 1 h. Downstream signaling showed sustained hyperphosphorylation of MAPK (Erk(1-2)) but not of SNT or Akt. High-dose NGF may induce cytoplasmic relocation of the receptor TrkA and axonal growth arrest independently of p75NTR.  相似文献   

2.
The p75 neurotrophin receptor (p75NTR) is a member of the tumor necrosis factor receptor superfamily that paradoxically mediates neuronal survival and differentiation or apoptotic cell death. Cleavage of p75NTR by a constitutively active metalloprotease could result in shedding of its extracellular domain (p75ECD) and generation of a pro-apoptotic intracellular domain (p75ICD). In this study, we established that exposure of a transgenic mouse photoreceptor cell line to intense light upregulated the expression of p75NTR and of the disintegrin metalloprotease tumor necrosis factor-converting enzyme (TACE) and resulted in apoptotic cell death. Light damage promoted TACE cleavage of p75NTR resulting in shedding of the soluble p75ECD and nuclear translocation of the p75ICD. Overexpression of TACE and p75NTR-induced p75NTR cleavage and secretion of p75ECD, but not nuclear transport of p75ICD. Light-induced cleavage of p75NTR, nuclear localization of p75ICD, and apoptosis were inhibited by IC-3, a metalloprotease inhibitor. Increased levels of p75NTR and TACE were observed in photoreceptor cells of animals with photic injury. Our findings support a role for TACE in the proteolytic cleavage of p75NTR and light-induced apoptosis.  相似文献   

3.
Spiral ganglion Schwann cells (SGSCs) myelinate spiral ganglion neurons (SGNs) and represent a potential source of neurotrophic support for SGNs. Deafening due to loss of hair cells results in gradual degeneration and death of SGNs. Successful efforts to maintain or regenerate a functional auditory nerve may depend on a healthy population of SGSCs, yet the responses of SGSCs to neural injury remain largely unknown. Here we investigate the role of p75(NTR) in SGSC responses to gradual denervation. Following deafening, SGSCs in the osseous spiral lamina (OSL) and, subsequently, in Rosenthal's canal (RC) expressed elevated p75(NTR) compared to hearing controls. p75(NTR)-positive cells co-labeled with S100 and RIP antibodies (Schwann cell markers), but not with anti-neurofilament. The pattern of p75(NTR) expression mirrored the pattern of neural degeneration, beginning in the OSL of the cochlea base and later extending into the apex. SGSCs expressed sortilin, a p75(NTR) co-receptor for pro-neurotrophins. Both pro-nerve growth factor (pro-NGF) and pro-brain derived neurotrophic factor (proBDNF) induced apoptosis in cultured SGSCs. Deafened animals exhibited significantly higher levels of SGSC proliferation (as measured by BrdU uptake) compared to hearing animals while total Schwann cell density remained stable, suggesting a tight regulation of SGSC proliferation and cell death. SGSCs undergoing cell division lose p75(NTR) expression from the cell surface and demonstrate nuclear localization of the intracellular domain (ICD), raising the possibility that p75(NTR) cleavage and ICD nuclear localization regulate SGSC proliferation. These results suggest that p75(NTR) contributes to SGSC responses to deafening and neural degeneration.  相似文献   

4.
Neurotrophins transmit signals retrogradely from synapses to cell bodies by two different types of surface receptors, p75NTR and Trks. Compared to TrkA, the function of p75NTR in nerve growth factor (NGF) endocytosis is less clear, and it is unknown whether p75NTR by itself may internalize other neurotrophins besides NGF. We directly compared TrkA and p75NTR for their ability to internalize NGF, and we also examined the endocytosis of iodinated brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) by p75NTR. Cells expressing solely TrkA internalized NGF more efficiently than cells expressing p75NTR. Surprisingly, cells expressing only p75NTR internalized far more BDNF or NT3 than NGF. Moreover, p75NTR was more important for surface binding than for intracellular accumulation of each neurotrophin. Finally, we established a mechanistic role for the clathrin pathway in p75NTR endocytosis. Our results suggest that p75NTR may have multiple roles in different subcellular locations, functioning both at the cell surface and also within endocytic compartments.  相似文献   

5.
The presence of multiple axon growth inhibitors may partly explain why central nervous system axons are generally incapable of regenerating after injury. Using RNA interference (RNAi) in dorsal root ganglia neurons (DRGN), we demonstrate siRNA-mediated silencing of components of the inhibitory signalling cascade, including p75NTR, NgR and Rho-A mRNA, of 70%, 100% and 100% of the relevant protein, respectively, while changes in neither protein levels nor cellular immunoreactivity were detected using the relevant scrambled siRNA control sequences. Importantly, after 48 h in culture after siRNA-mediated knockdown of Rho-A, neurite outgrowth was enhanced by 30% compared to that after p75NTR and 50% after NgR silencing. By 3 days, a 5-, 3.5- and 6.5-fold increase in betaIII-tubulin protein levels were observed compared to controls without siRNA after knockdown of p75NTR, NgR and Rho-A, respectively. Together, these results suggest that Rho-A knockdown might be the most effective target for a disinhibition strategy to promote CNS axon regeneration in vivo.  相似文献   

6.
Kindling, an experimental model of epileptogenesis, and activation-induced synaptic reorganization are modulated by nerve growth factor (NGF), but whether NGF acts via its high-affinity receptor TrkA and/or the common neurotrophin receptor p75NTR is unknown. We previously demonstrated, and confirmed in this study, that inhibition of NGF binding to both TrkA and p75NTR inhibited kindling and decreased kindling-induced mossy fiber sprouting. We now report specific inhibition of TrkA.NGF binding, but not p75NTR.NGF binding, retarded perforant path kindling progression. However, mossy fiber sprouting was inhibited by either selective TrkA.NGF or p75NTR.NGF antagonists. Our results suggest that TrkA, but not p75NTR, plays a role in kindling, while both receptors modulate kindling-induced mossy fiber sprouting. This implicates different mechanisms of neurotrophin action on kindling (mediated by TrkA) and neuronal sprouting (mediated by both TrkA and p75NTR) and suggests that sprouting involves kindling-independent neurotrophin action via p75NTR.  相似文献   

7.
8.
Brain‐derived neurotrophic factor (BDNF) is critically involved in modeling the developing nervous system and is an important regulator of a variety of crucial functions in the mature CNS. BDNF exerts its action through interactions with two transmembrane receptors, either separately or in concert. BDNF has been implicated in several neurological disorders, and irregularities in BDNF function may have severe consequences. Administration of BDNF as a drug has thus far yielded few practicable results, and the potential side effects when using a multifunctional protein are substantial. In an effort to produce more specific compounds without side effects, small peptides mimicking protein function have been developed. The present study characterized two mimetic peptides, Betrofin 3 and Betrofin 4, derived from the BDNF sequence. Both Betrofins bound the cognate BDNF receptors, TrkB and p75NTR, and induced neurite outgrowth and enhanced neuronal survival, probably by inducing signaling through tha Akt and MAPK pathways. Distinct, charged residues within the Betrofin sequences were identified as important for generating the neuritogenic response, which was also inhibited when BDNF was added together with either Betrofin, indicating partial agonistic effects of the peptides. Thus, two peptides derived from BDNF induced neurite outgrowth and enhanced neuronal survival, probably through binding to BDNF receptors. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Axon growth inhibitory proteins associated with central nervous system (CNS) myelin are responsible in part for the absence of long distance axon regeneration in the adult mammalian CNS. We have recently reported that myelin-associated glycoprotein (MAG), which is also present in peripheral nerves, is a potent inhibitor of neurite growth. This was surprising given the robust regenerative capacity of peripheral nerves. We now provide evidence that myelin purified from peripheral nerve also has neurite growth inhibitory activity. However, this activity can be masked by laminin, which is a constituent of the Schwann cell basal lamina. We also report that laminin, which is largely absent from the normal adult mammalian CNS, when added to purified CNS myelin, can override the neurite growth inhibitory activity in CNS myelin. These results have important implications for the development of strategies to foster axon regeneration in the adult mammalian CNS where multiple growth inhibitors exist. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The common neurotrophin receptor (p75NTR) is a member of the tumor necrosis factor receptor superfamily and binds the neurotrophins nerve growth factor, brain derived neurotrophic factor, neurotrophin-3, and neurotrophin-4. P75NTR is expressed on developing motoneurons and is reexpressed on adult motoneurons under pathological conditions such as nerve trauma or neurodegeneration. Here we examined the regulation and function of p75NTR during regeneration after peripheral transection of the facial nerve of adult mice. Axotomy led to a strong increase in p75NTR immunoreactivity on the injured and regenerating facial motoneurons and on denervated Schwann cells. Cellular colocalization also revealed p75NTR immunoreactivity on neighboring blood vessels and cells in the injured nerve, but not on activated GFAP+ astrocytes or alphaMbeta2+ microglia and macrophages. To determine the function of this receptor we examined the effects of p75NTR deficiency on neuroglial activation, on the speed of axonal regeneration, and on neuronal survival after facial axotomy in two different transgenic mouse lines carrying targeted insertions exon 4 (p75e4-/-) or exon 3 (p75e3-/-) of the p75NTR gene. In both animal models absence of p75NTR led to a twofold, early increase in the number of CD3+. T-cells and in the microglial immunoreactivity for the alpha5beta1, alpha6beta1, and alphaMbeta2 integrins at day 4 in the facial nucleus and in the crushed facial motor nerve. No changes were observed in the number of reactive GFAP+ astrocytes or on late microglial and lymphocyte responses. The rate of axonal elongation in the crushed facial nerve, as well as neuronal survival, was found to be unaffected. Overall, the current study shows that the p75NTR receptor plays an important regulatory role in early neuroglial and immune activation.  相似文献   

11.
The p75 neurotrophin receptor has been implicated in the regulation of multiple cellular functions that differ depending on the cell context. We have observed that p75NTR is strongly induced on astrocytes as well as neurons in the hippocampal CA3 region after seizures; however, the function of this receptor on these glial cells has not been defined. We have employed a primary culture system to investigate the effects of neurotrophins on astrocytes. Treatment of hippocampal astrocytes with nerve growth factor (NGF) caused a reduction in cell number, but did not elicit an apoptotic response, in contrast to hippocampal neurons. Instead, activation of p75NTR by NGF attenuated proliferation induced by mitogens such as EGF or serum. These studies demonstrate the cell type specificity of neurotrophin functions in the brain. © 2009 Wiley‐Liss, Inc.  相似文献   

12.

Background

This study aimed to investigate the potential mechanism of paeonol in the treatment of neuropathic pain.

Methods

Relevant mechanisms were explored through microglial pseudotime analysis and the use of specific inhibitors in cell experiments. In animal experiments, 32 SD rats were randomly divided into the sham operation group, the chronic constrictive injury (CCI) group, the ibuprofen group, and the paeonol group. We performed behavioral testing, ELISA, PCR, Western blotting, immunohistochemistry, and immunofluorescence analysis.

Results

The pseudotime analysis of microglia found that RhoA, Rock1, and p38MAPK were highly expressed in activated microglia, and the expression patterns of these genes were consistent with the expression trends of the M1 markers CD32 and CD86. Paeonol decreased the levels of M1 markers (IL1β, iNOS, CD32, IL6) and increased the levels of M2 markers (IL10, CD206, ARG-1) in LPS-induced microglia. The expression of iNOS, IL1β, RhoA, and Rock1 was significantly increased in LPS-treated microglia, while paeonol decreased the expression of these proteins. Thermal hyperalgesia occurred after CCI surgery, and paeonol provided relief. In addition, paeonol decreased the levels of IL1β and IL8 and increased the levels of IL4 and TGF-β in the serum of CCI rats. Paeonol decreased expression levels of M1 markers and increased expression levels of M2 markers in the spinal cord. Paeonol decreased IBA-1, IL1β, RhoA, RhoA-GTP, COX2, Rock1, and p-p38MAPK levels in the spinal dorsal horn.

Conclusion

Paeonol relieves neuropathic pain by modulating microglial M1 and M2 phenotypes through the RhoA/p38 MAPK pathway.  相似文献   

13.
目的观察抑郁症模型大鼠学习记忆力改变情况,研究海马脑源性神经营养因子(BDNF)、酪氨酸激酶受体B(TrkB)和神经营养因子低亲和力受体(p75NTR)蛋白的表达变化,以及米氮平的调节作用。方法制备抑郁症大鼠模型;采用Morris水迷宫实验方法记录大鼠游动距离变化;免疫组化染色方法测定海马BDNF、TrkB和p75NTR表达阳性区吸光度值。结果抑郁症模型大鼠在目标象限游动距离减少,海马BDNF及TrkB蛋白表达减少,p75NTR蛋白表达增加;米氮平逆转上述行为学异常及蛋白表达异常(p﹤0.01)。结论抑郁症模型大鼠可能存在BDNF-p75NTR通路信息传递增强,而抗抑郁治疗用药可能通过BDNFTrkB信号通路的改变引起相应行为学改善。  相似文献   

14.
Homeostatic regulation of cardiac function is dependent on the balance of inputs from the sympathetic and parasympathetic nervous systems. We investigated whether the p75 neurotrophin receptor plays a developmental role in cardiac innervation by analyzing sympathetic and parasympathetic fibers in the atria of p75 knockout and wildtype mice at several stages of postnatal development, and examining the effect on control of heart rate. We found that parasympathetic innervation of the atria in p75-/- mice was similar to wildtype at all time points, but that the density of sympathetic innervation was dynamically regulated. Compared to wildtype mice, the p75-/- mice had less innervation at postnatal day 4, an increase at day 28, and decreased innervation in adult mice. These changes reflect defects in initial fiber in-growth and the timing of the normal developmental decrease in sympathetic innervation density in the atria. Thus, p75 regulates both the growth and stability of cardiac sympathetic fibers. The distribution of sympathetic fibers was also altered, so that many regions lacked innervation. Basal heart rate was depressed in adult p75-/- mice, and these mice exhibited a diminished heart rate response to restraint stress. This resulted from the lack of sympathetic innervation rather than increased parasympathetic transmission or a direct effect of p75 in cardiac cells. Norepinephrine was elevated in p75-/- atria, but stimulating norepinephrine release with tyramine produced less tachycardia in p75-/- mice than wild type mice. This suggests that altered density and distribution of sympathetic fibers in p75-/- atria impairs the control of heart rate.  相似文献   

15.
The common receptor for neurotrophins, p75, has important roles in internalization and trafficking of neurotrophins along axons. Recent studies show that an astonishing array of proteins, including lectins, pathogens and neurotoxins, bind the p75 receptor, suggesting that they can hijack and utilize this receptor for trafficking between neuronal populations within the nervous system. Such pathogens include the neurologically important rabies viruses, prion proteins, beta-amyloid and possibly tetanus toxin. These proteins may hijack existing transport machineries designed to traffick neurotrophins, thus allowing the infiltration and distribution of pathogens and toxins among vulnerable neuronal populations with devastating effects, as seen in rabies, prion encephalopathies, Alzheimer's disease and tetanic muscle spasm. The discovery of an entry and transport machinery that is potentially shared between pathogens and neurotrophins sheds light ono trafficking systems in the nervous system and may assist the design of novel therapeutic avenues that prevent or slow the progression of diverse chronic and acute neurological disorders.  相似文献   

16.
正Peripheral nerve injury leads to Wallerian degeneration of severed axons,leaving the Schwann cell(SC)sheath behind.Denervated SCs may then either survive and remyelinate a regenerating axon,or they may undergo cell death.Because SCs provide trophic support and guidance cues to regenerating nerve fibers,SC loss severely hampers nerve regeneration(Hall,1986).Thus,significant work has sought to characterize the molecular  相似文献   

17.
18.
Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury(SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control(no surgical intervention, n = 6), SCI(SCI only, n = 5), and electrical simulation(ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10~(th) thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.  相似文献   

19.
This study examined the roles of nerve growth factor (NGF) and the p75 neurotrophin receptor (p75NTR) in the growth of dorsal root ganglion (DRG) central processes in the dorsal horn. Two genetically modified mouse strains were used: transgenic mice that overexpress NGF in the CNS under the control of the glial fibrillary acidic protein promoter, and p75NTR exon III null mutant mice that express a hypomorphic form of this receptor. In both NGF transgenic and nontransgenic mice with hypomorphic expression of p75NTR, there is a significant loss of DRG neurons compared to mice with normal p75NTR expression. This reduction in neuron number has been shown to underlie a corresponding decrease in peripheral nociceptive sensory innervation. Within the CNS, however, nociceptive innervation of the dorsal horn appears to be unaffected by hypomorphic expression of p75NTR. Comparisons of calcitonin gene-related peptide immunoreactivity in the dorsal horn revealed that the area occupied by DRG central processes was not significantly different between p75NTR hypomorphic mice and wild-type siblings, or between NGF transgenic mice with either hypomorphic or normal expression of p75NTR. We propose that DRG central processes arborize extensively in both NGF-transgenic and nontransgenic p75NTR hypomorphic mice in order to compensate for the loss of DRG neurons and restore dorsal horn innervation to normal levels. We also present evidence suggesting that NGF plays only a minor role in the growth of DRG central processes.  相似文献   

20.
The TrkC subfamily of primary high-affinity neurotrophin-3 receptors is composed of catalytic (kinase-containing; TrkC K) and noncatalytic (TrkC NC) isoforms generated by alternative splicing. We previously reported the presence of the mouse noncatalytic TrkC NC2 isoform in regions of neuronal differentiation [Menn, B., Timsit, S., Calothy, G. & Lamballe, F. (1998) J. Comp. Neurol., 401, 47-64]. In order to gain insight into specific roles for TrkC NC2 receptors during CNS neurogenesis, we compared its distribution with that of its catalytic counterparts and the p75NTR receptor in in vivo and in vitro model systems of early and late neuronal differentiation. We found that TrkC NC2 expression coincided with the exit of neuronal progenitors from the cell cycle and was maintained in differentiated cerebellar neurons. We also showed that, whilst TrkC K receptors were expressed both in mitotic and postmitotic cells, TrkC NC2 was present only in differentiating neural stem cell progeny, suggesting its involvement in neuronal and glial cell differentiation. During neuritogenesis of primary neocortical neurons, both TrkC isoforms as well as p75NTR were located in axonal and dendritic processes. However, whilst these various receptors were present in the same neuronal compartments, TrkC NC2 distribution was specifically restricted to distinct areas of extending neurites. Taken together, these findings suggest that spatiotemporal localization of the noncatalytic receptor could account for specific local effects of neurotrophin-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号