首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 M) had no effect in the absence of intracellular adenosine 5triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 M) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5-[, -methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5-O-(3-thiotriphosphate) (ATP [-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 M), a specific inhibitor of adenosine 3, 5-cyclic monophosphatedependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 M) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.  相似文献   

2.
Large-conductance Ca2+-activated K+ channels were studied in membranes of cultured rabbit airway smooth muscle cells, using the patch-clamp technique. In cell-attached recordings, channel openings were rare and occurred only at very positive potentials. Bradykinin (10 M), an agonist which releases Ca2+ from the sarcoplasmic reticulum, transiently increased channel activity. The metabolic blocker 2,4-dinitrophenol (20 M), which lowers cellular adenosine triphosphate (ATP) levels, induced a sustained increase of channel activity in cell-attached patches. In excised patches, these channels had a slope conductance of 155 pS at 0 mV, were activated by depolarization and by increasing the Ca2+ concentration at the cytoplasmic side above 10–7 mol/l. ATP, applied to the cytoplasmic side of the patches, dose-dependently decreased the channel's open-state probability. An inhibition constant (K i) of 0.2 mmol/l was found for the ATP-induced inhibition. ATP reduced the Ca2+ sensitivity of the channel, shifting the Ca2+ activation curve to the right and additionally reducing its steepness. Our results demonstrate that cytoplasmic ATP inhibits a large-conductance Ca2+-activated K+ channel in airway smooth muscle. This ATP modulation of Ca2+-activated K+ channels might serve as an important mechanism linking energy status and the contractile state of the cells.  相似文献   

3.
Simultaneous whole-cell patch-clamp and fura-2 fluorescence [Ca2+]i measurements were used to characterize Ca2+-activated K+ currents in cultured bovine chromaffin cells. Extracellular application of histamine (10 M) induced a rise of [Ca2+]i concomitantly with an outward current at holding potentials positive to –80 mV. The activation of the current reflected an increase in conductance, which did not depend on membrane potential in the range –80 mV to –40 mV. Increasing the extracellular K+ concentration to 20 mM at the holding potential of –78 mV was associated with inwardly directed currents during the [Ca2+]i elevations induced either by histamine (10 M) or short voltage-clamp depolarizations. The current reversal potential was close to the K+ equilibrium potential, being a function of external K+ concentration. Current fluctuation analysis suggested a unit conductance of 3–5 pS for the channel that underlies this K+ current. The current could be blocked by apamin (1 M). Whole-cell current-clamp recordings snowed that histamine (10 M) application caused a transient hyperpolarization, which evolved in parallel with the [Ca2+]i changes. It is proposed that a small-conductance Ca2+-activated K+ channel is present in the membrane of bovine chromaffin cells and may be involved in regulating catecholamine secretion by the adrenal glands of various species.  相似文献   

4.
The periodic oscillations of outward currents were studied in smooth muscle cells of the rabbit pulmonary artery. The combined stimuli of superfusion with 1 mM caffeine and depolarization of the membrane potential to 0 mV evoked periodic oscillations of outward currents with fairly uniform amplitudes and intervals. The oscillating outward currents induced by caffeine were dependent on intracellular Ca2+ concentration ([Ca2+]i) and had a reversal potential near to the equilibrium potential for K+. So the oscillating outward currents are carried by K+ through Ca2+-dependent K+ channels (I K(Ca)), and may reflect the oscillations of [Ca2+]i. The oscillating outward currents were abolished, or their frequency reduced, by lowering external [Ca2+], Ca2+ channel blockers, or by 1 M ryanodine, indicating that: (1) there is a continuous influx of Ca2+ through the plasma membrane at a holding potential of 0 mV; (2) the periodic transient increases of [Ca2+]i are ascribed to the rhythmic release of Ca2+ from ryanodinesensitive intracellular store by the mechanism of Ca2+-induced Ca2+ release (CICR). On the basis of the above results, we simulated the oscillation of [Ca2+]i induced by caffeine, which is known to lower the threshold of CICR. The patterns of peak amplitude histograms of spontaneous transient outward currents (STOC) in the oscillating cells were different from those in non-oscillating cells. The amplitudes of STOC in the latter were more variable than those in the former. The oscillating outward currents were modulated by 1 M forskolin and 1 M sodium nitroprusside, but STOC were little affected. The above differences between STOC and oscillating outward currents suggest that the two currents are activated by the Ca2+ originating from different intracellular Ca2+ stores which are functionally heterogeneous.  相似文献   

5.
The effects of neuropeptide Y (NPY) on the Ca2+-activated K+ channel in smooth muscle cells from the rat tail artery were studied by whole-cell and single-channel patch-clamp recording techniques. In the presence of nifedipine (1 M), whole-cell outward currents through Ca2+-activated K+ channels were inhibited by NPY in a dose-dependent manner from 20 to 200 nM. A maximum inhibition to about 48% of the control current could be achieved. Recordings from outside-out patches showed that the open probability of Ca2+-activated K+ channels were similarly inhibited by NPY. At 200 nM NPY, the open probability was reduced to about 36% of the control value. NPY did not affect the open times or current amplitude, but increased significantly the short (from 0.49 to 0.58 ms) and long (from 441 to 728 ms) closed times. Inhibition of Ca2+-activated K+ channels by NPY may contribute to its excitatory action on vascular smooth muscle cells.  相似文献   

6.
Enzymatically dispersed smooth muscle cells of the guinea-pig portal vein were studied by the patch-clamp technique. They were found to have Ca2+-dependent K+ channels with the typical properties of the BK channel, i.e. a reversal potential at the calculated equilibrium potential for K+ ions, a striking voltage dependence, and a conductance of approximately 200 pS ([K+]0 50 mM, [K+]i 150 mM, positive patch potentials). Tedisamil, a new bradycardic agent with an inhibitory action on K+ currents in heart muscle, reduced the open probability of the BK channels concentration-dependently (1–100 M) when applied at the cytosolic side of membrane inside-out patches. At 100 M [Ca2+]i, the IC50 of tedisamil was 13.8 M (¯x, n=5). Tedisamil increased the frequency of channel closures, and reduced the mean duration of openings from 8 ms to < 1 ms, while the mean duration of closures within bursts (1–2 ms) was not altered. Tedisamil did not affect long closures (> 160 ms) between bursts, either. The mean time of residence of tedisamil at the BK channel was estimated to be 1–2ms. Hence, tedisamil, in comparison to the slow blocker Ba2+ and the fast blocker tetraethylammonium, holds the position of an intermediate K+ channel blocker.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

7.
Ca2+-activated maxi K+ channels were studied in inside-out patches from smooth muscle cells isolated from either porcine coronary arteries or guinea-pig urinary bladder. As described by Groschner et al. (Pflügers Arch 417:517, 1990), channel activity (NP o) was stimulated by 3 M [Ca2+]c (1 mM Ca-EGTA adjusted to a calculated pCa of 5.5) and was suppressed by the addition of 1 mM Na2ATP. The following results suggest that suppression of NP o by Na2ATP is due to Ca2+ chelation and hence reduction of [Ca2+]c and reduced Ca2+ activation of the channel. The effect was absent when Mg ATP was used instead of Na2ATP. The effect was diminished by increasing the [EGTA] from 1 to 10 mM. The effect was absent when [Ca2+]c was buffered with 10 mM HDTA (apparent pK Ca 5.58) instead of EGTA (pK Ca 6.8). A Ca2+-sensitive electrode system indicated that 1 mM Na2ATP reduced [Ca2+]c in 1 mM Ca-EGTA from 3 M to 1.4 M. Na2ATP, Na2GTP, Li4AMP-PNP and NaADP reduced measured [Ca2+]c in parallel with their suppression of NP o. After the Na2ATP-induced reduction of [Ca2+]c was re-adjusted by adding either CaCl2 or MgCl2, the effect of Na2ATP on NP o disappeared. In vivo, intracellular [Mg2+] exceeds free [ATP4–], hence ATP modulation of maxi K+ channels due to Ca2+ chelation is without biological relevance.  相似文献   

8.
Ca2+-activated K+ ionic currents in the membrane of cultured smooth muscle cells isolated from foetal and adult human aorta were studied using whole cell and single-channel patch-clamp techniques. Whole cell currents in adult smooth muscle cells were 3–8 times larger than in foetal cells of similar sizes. The elementary conductance and ionic selectivity of single Ca2+-activated K+ were identical for both types of cells. Channel openings occurred in burst, the duration of which was 3–5-fold longer in adult than in foetal cells. The voltage dependency of the channel activating mechanism and the dependency of the mean open time on the Ca2+ concentration on the inner side of the membrane were similar for both types of cells. These results suggest that the main reason for the increase in potassium conductance during development is an alteration in the open time of the Ca2+-activated K+ channels.  相似文献   

9.
Actions of Ca2+ antagonists, verapamil, nicardipine and diltiazem, were investigated on the Ca2+ inward current in the fragmented smooth muscle cell membrane (smooth muscle ball; SMB) obtained from the longitudinal muscle layer of the rabbit ileum, by enzymatic dispersion. All Ca2+ antagonists inhibited the inward current, in a dose-dependent manner. The ID50 value on the maximum amplitude of the inward current of nicardipine was 24 nM, and this value was roughly 50 times lower than values obtained with verapamil and diltiazem, when the inward current was provoked by 0 mV command pulse from the holding potential of –60 mV. Lowering the holding potential to –80 mV shifted the dose-response curve to the right. When depolarizing pulses (100 ms, stepped up to 0 mV from –60 mV or –80 mV) were applied every 20 s, the peak amplitude of the inward current remained unchanged, but nicardipine immediately, and diltiazem and verapamil slowly reduced the peak amplitude. These slow inhibitions by the latter two drugs depended on the frequency or number of stimulations. Nicardipine but not diltiazem and verapamil shifted the voltage-dependent inactivation curve to the left (3 s duration of the conditioning pulse). However, with a longer conditioning pulse (10 s) verapamil and diltiazem shifted the voltage-dependent inactivation curves to the left. Therefore, the inhibitory actions of these Ca2+ antagonists differ. Namely, diltiazem and verapamil inhibit the Ca2+ channels, mainly in a frequency-or use-dependent manner while nicardipine does so in a voltage-dependent manner.  相似文献   

10.
Dai F  Mao Z  Xia J  Zhu S  Wu Z 《Yonsei medical journal》2012,53(4):842-848

Purpose

Pulmonary Kv channels are thought to play a crucial role in the regulation of cell proliferation and apoptosis. Previous studies have shown that fluoxetine upregulated the expression of Kv1.5 and prevented pulmonary arterial hypertension in monocrotaline-induced or hypoxia-induced rats and mice. The current study was designed to test how fluoxetine regulates Kv1.5 channels, subsequently promoting apoptosis in human PASMCs cultured in vitro.

Materials and Methods

Human PASMCs were incubated with low-serum DMEM, ET-1, and fluoxetine with and without ET-1 separately for 72 h. Then the proliferation, apoptosis, and expression of TRPC1 and Kv1.5 were detected.

Results

In the ET-1 induced group, the upregulation of TRPC1 and down regulation of Kv1.5 enhanced proliferation and anti-apoptosis, which was reversed when treated with fluoxetine. The decreased expression of TRPC1 increased the expression of Kv1.5, subsequently inhibiting proliferation while promoting apoptosis.

Conclusion

The results from the present study suggested that fluoxetine protects against big endothelin-1 induced anti-apoptosis and rescues Kv1.5 channels in human pulmonary arterial smooth muscle cells, potentially by decreasing intracellular concentrations of Ca2+.  相似文献   

11.
Cellular uptake of neutral amino acids via Na+ cotransporters is known to be associated with an increased membrane K+ conductance mediated by an unknown mechanism that is essential for avoiding excessive cell swelling. We now demonstrate by patch-clamp single-channel current recording that exposure of rat liver cells to L-alanine, but not the poorly transported D-stereoisomer, evokes opening of single K+ channels and that this effect is reversible upon removal of the amino acid. The nature of the conductance pathways opened in the intact cell by L-alanine has been investigated in cell-free excised membrane patches where it can be shown that the K+-selective channels are opened by Ca2+ acting from the inside of the membrane at a concentration as low as 0.1 M.  相似文献   

12.
Actions of Ca2+ antagonists (verapamil, nicardipine and diltiazem) on the voltage-dependent K+ current, obtained from the fragmented smooth muscle cell membrane (smooth muscle ball; SMB) of the rabbit small intestine, were investigated using voltage clamp techniques. To eliminate the influence of the Ca2+-dependent K+ current, the voltage-dependent K+ current was recorded in 2.5 mM Mn2+ (Ca2+ omitted) solution. These three Ca2+ antagonists inhibited the peak amplitude of the K+ current, in a dose-dependent manner. During application of a long command pulse (duration, 3 s), the amplitude of the voltage-dependent K+ current decreased slowly with time. Diltiazem inhibited the K+ current with a slight prolongation of the 20% decay time, while TEA (tetraethyl-ammonium), a K+ channel blocker, inhibited the current, without affecting the decay. By contrast, verapamil and nicardipine accelerated inactivation. In the control, the voltage-dependent inactivation was also seen in the K+ current. This inactivation curve below 0 mV was not modified by 10 M diltiazem, 5 M verapamil nor 3 M nicardipine. These results indicate that inhibition of the voltage-dependent K+ current by verapamil or nicardipine differed from that by diltiazem.An abstract of this work was reported at the 59th general meeting of Japan Pharmacological Society (Terada et al. 1986).  相似文献   

13.
Single-channel properties of Ca2+-activated K+ channels have been investigated in excised membrane patches of N1E-115 mouse neuroblastoma cells under asymmetric K+ concentrations at 0 mV. The SK channels are blocked by 3 nM external apamin, are unaffected by 20 mM external tetraethylammonium (TEA) and have a single-channel conductance of 5.4 pS. The half-maximum open probability and opening frequency of SK channels are observed at 1 M internal Ca2+. Concentration/effect curves of these parameters are very steep with exponential slope factors between 7 and 13. Opentime distributions demonstrate the existence of at least two open states. The mean short open time increases with [Ca2+]i, whereas the mean long open time is independent of [Ca2+]i. At low [Ca2+]i the short-lived open state predominates. At saturating [Ca2+]i the number of longlived openings is more enhanced than the number of short-lived openings and both open states occur equally frequently. The opening frequency as well as the open times of SK channels are independent of the membrane potential in the range of –16 to +40 mV. The results indicate that activation of K+ current through SK channels is mainly determined by the Ca2+-dependent single-channel opening frequency. BK channels in N1E-115 cells are insensitive to 100 nM external apamin, are sensitive to external TEA in the millimolar range and have a single-channel conductance of 98 pS. Half-maximum open probability and opening frequency of the BK channel are observed at 7.5–21 M internal Ca2+. The slope factors of concentration/effect curves range between 1.7 and 2.9. As the BK channel open time is markedly enhanced at raised [Ca2+]i, the Ca2+ dependence of the current through BK channels is determined by the single-channel opening frequency as well as the open time. SK as well as BK channels appear to be clustered and interact in a negative cooperative manner in multiple channel patches. The differences in Ca2+ dependence suggest that BK channels are activated by a local high [Ca2+]i associated with Ca2+ influx, whereas SK channels may be activated by Ca2+ released from internal stores as well.  相似文献   

14.
A novel class of Ca2+-activated K+ channel, also activated by Mg-ATP, exists in the main pulmonary artery of the rat. In view of the sensitivity of these KCa,ATP channels to such charged intermediates it is possible that they may be involved in regulating cellular responses to hypoxia. However, their electrophysiological profile is at present unknown. We have therefore characterised the sensitivity of KCa,ATP channels to voltage, intracellular Ca2+ ([Ca2+]i) and Mg-ATP. They have a conductance of 245 pS in symmetrical K+ and are approximately 20 times more selective for K+ ions than Na+ ions, with a K+ permeability (P K) of 4.6×10–13cm s–1. Ca2+ ions applied to the intracellular membrane surface of KCa,ATP channels causes a marked enhancement of their activity. This activation is probably the result of simultaneous binding of at least two Ca2+ ions, determined using Hill analysis, to the channel or some closely associated protein. This results in a shift of the voltage activation threshold to more hyperpolarized membrane potentials. The activation of KCa,ATP channels by Mg-ATP has an EC50 of approximately 50 M. Although the EC50 is unaffected by [Ca2+]i, channel activation by Mg-ATP is enhanced by increasing [Ca2+]i. One possible interpretation of these data is that Mg-ATP increases the sensitivity of KCa,ATP channels to Ca2+. It is therefore possible that under hypoxic conditions, where lower levels of Mg-ATP may be encountered, the sensitivity of KCa,ATP channels to Ca2+ and therefore voltage is reduced. This would tend to induce a depolarising influence, which would favour the influx of Ca2+ through voltage-activated Ca2+ channels, ultimately leading to increased vascular tone.  相似文献   

15.
The interaction of Ba2+ and TEA with Ca2+-activated K+ channels was studied in isolated membrane patches of cells from longitudinal jejunal smooth muscle of rabbit and from guinea-pig small mesenteric artery (100 m external diameter). Ba2+ applied from the inside of the membrane did not reduce unit current, except at high concentrations, but channels failed to open for long periods (s). This effect became much stronger when the potential gradient was in a direction driving Ba2+ into the channel and was reduced by increasing K+ ion concentration on the outside of the membrane. These results are consistent with Ba2+ entering the open channel and blocking at a site most of the way through the channel bore. In contrast, TEA and procaine dose-dependently reduced unit current amplitude at all patch potentials and slightly increased mean open time. Their effects were not detectably voltage-dependent and could be explained by TEA and procaine blocking the open channel with a timecourse that was faster than the frequency response of the recording system. The lack of appreciable voltage-dependence suggests that TEA and procaine bind to a site near to the inner mouth of the channel.  相似文献   

16.
目的:观察吸烟对大鼠肺动脉平滑肌大电导的钙激活的钾通道(BKCa)和电压依赖性延迟整流钾通道Kv1.5蛋白和mRNA表达的影响,以阐明吸烟引起的肺血管反应性改变中钾通道表达的变化。方法:复制大鼠的慢性吸烟模型,采用HE染色、免疫组织化学染色、原位杂交等方法。结果:(1)慢性吸烟可降低大鼠肺动脉平滑肌 BKCa 蛋白和mRNA表达;(2)慢性吸烟可降低大鼠肺动脉平滑肌Kv1.5蛋白和mRNA表达;(3)大动脉 BKCa的降低程度大于Kv1.5,小动脉 BKCa和Kv1.5的降低程度无明显差异。结论:慢性吸烟可下调大鼠肺动脉平滑肌钾通道 BKCa和Kv1.5的表达水平,是导致肺血管反应性增高的机制之一。  相似文献   

17.
The patch-clamp technique and fluorescence polarization analysis were used to study the dependence of Ca2+-dependent K+ channel kinetics and membrane fluidity on cholesterol (CHS) levels in the plasma membranes of cultured smooth muscle rabbit aortic cells. Mevinolin (MEV), a potent inhibitor of endogenous CHS biosynthesis was used to deplete the CHS content. Elevation of CHS concentration in the membrane was achieved using a CHS-enriching medium. Treatment of smooth muscle cells with MEV led to a nearly twofold increase in the rotational diffusion coefficient of DPH (D) and to about a ninefold elevation of probability of the channels being open (P o). The addition of CHS to the cells membrane resulted in a nearly twofold decrease in D and about a twofold decrease in P o. Elementary conductance of the channels did not change under these conditions. These data suggest that variations of the CHS content in the plasma membrane of smooth muscle cells affect the kinetic properties of Ca2+-dependent K+ channels presumably due to changes in plasma membrane fluidity. Our results give a possible explanation for the reported variability of Ca2+-dependent K+ channels kinetics in different preparations.  相似文献   

18.
Ca2+ (ICa) and K+ (IK) currents were recorded in single cultured cells from rat aorta using the whole cell clamp technique with patch electrodes. ICa was detected at–30 mV, and at 20 mV it reached a peak in about 10 ms and decayed with a t1/2=50 ms. The mean maximum slope conductance (GCa) was 30 S/cm2. IK was detected at–10 mV and at 20 mV reached its maximum with a t1/2=12 ms. For IK, GK=200 S/cm2. These channels can be activated during action potentials and play a role in the excitation and contraction of vascular smooth muscle cells.Doctoral training program UAM-1  相似文献   

19.
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na+ concentration ([Na+]i) and vice versa. In addition, extracellular Na+ depletion decreased [Na+]i. In voltage-clamped cells, BKCa currents were markedly increased by extracellular Na+ depletion. In inside-out patches, increasing [Na+]i from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BKCa channels and decreasing intracellular K+ concentration ([K+]i) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na+]i gradually from 0 to 70 mM, by replacing K+, markedly reduced single channel conductance and NPo. The Na+–Ca2+ exchange blocker Ni2+ or KB-R7943 decreased [Na+]i and increased BKCa currents simultaneously, and the Na+ ionophore monensin completely inhibited BKCa currents. BKCa currents were significantly augmented by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM and significantly reduced by decreasing [K+]o from 12 or 6 to 0 mM or applying the Na+–K+ pump inhibitor ouabain. These results suggest that intracellular Na+ inhibit single channel conductance of BKCa channels and that intracellular K+ increases single channel conductance and NPo. GH Liang and MY Kim contributed equally to this publication and therefore share the first authorship.  相似文献   

20.
Astract We investigated the electrical responses of Ca-activated K (KCa) currents induced by hypoxia and reduction or oxidation of the channel protein in pulmonary (PASMC) and ear (EASMC) arterial smooth muscle cells using the patch-clamp technique. In cell-attached patches, in the presence of a high K solution (containing 0.316 (M Ca2+), the activity of KCa channels from PASMC was decreased (by 49±7% compared to control, pipette potential = –70 mV) by changing to a hypoxic solution (1 mM Na2S2O4, aeration with 100% N2 gas). EASMC channels did not respond to hypoxia. In order to investigate the possible mechanisms involved, using inside-out patches bathed symmetrically in 150 mM KCl, we applied redox couples to the intracellular side. Reducing agents, such as dithiothreitol (DDT, 5 mM), reduced glutathione, (GSH, 5 mM), and nicotinamide adenine dinucleotide reduced (NADH, 2 mM) decreased PASMC, but not EASMC, KCa channel activity. However, oxidizing agents such as 5,5-dithio-bis(2-nitrobenzoic acid) (DTNB, 1 mM), oxidized glutathione (GSSG, 5 mM) and NAD (2 mM) increased KCa channel activity in both PASMC and EASMC. The increased activity due to oxidizing agents was restored by applying reducing agents. From these results, we could suggest that the basal redox state of the EASMC KCa channel is more reduced than that of the PASMC channel, since the response of KCa channels of the EASMC to intracellular reducing agents differs from that of the PASMC. This difference may be related to the different responses of PASMC and EASMC KCa channels to hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号