首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell lines derived from different species show striking differences in their sensitivity to the cytostatic and anti-retrovirus activity, as well as the intracellular metabolism, of 3'-azido-2',3'-dideoxythymidine (AzddThd) and 2',3'-dideoxycytidine (ddCyd). AzddThd and ddCyd are considerably more cytostatic to human (i.e. Raji, Molt/4F, ATH8) cell lines than murine (i.e. L1210) cells. The intracellular levels of AzddThd 5'-triphosphate and ddCyd 5'-triphosphate formed do not seem related to the cytostatic effects achieved by these compounds. In human lymphoid (ATH8, Molt/4F) and caprine ovary (Tahr) cells AzddThd accumulates as its 5'-monophosphate (AzddTMP), whereas in murine leukemia (L1210) cells it is readily metabolized to the 5'-triphosphate (AzddTTP). The rapid conversion of AzddThd to AzddTTP in murine cells may explain why AzddThd has a pronounced activity against Moloney murine sarcoma virus (MSV)-induced transformation of murine C3H cells in vitro and MSV-induced tumor development in newborn NMRI mice in vivo. In contrast, ddCyd has not much activity in these murine assay systems, and this may seem related to the poor conversion of ddCyd to its 5'-triphosphate in murine cells. In human cells, however, ddCyd is more extensively phosphorylated to its 5'-triphosphate than in murine cells. When [3H]AzddThd and [3H]ddCyd were compared for their metabolism in ATH8 and Molt/4F cells, little [3H]AzddTTP was formed even after a 48-hr incubation period, whereas under the same conditions substantial levels of [3H]ddCTP built up gradually. Thus, much higher ddCTP than AzddTTP levels were achieved in human lymphoid cells, an observation that may be particularly relevant from a therapeutic viewpoint.  相似文献   

2.
The 3'-fluoro-and 3'-azido-substituted derivatives of 2',3'-dideoxythymidine (ddThd), 2',3'-dideoxyuridine (ddUrd), 2',3'-dideoxy-5-ethyluridine (ddEtUrd) and 2',3'-dideoxycytidine (ddCyd) have been synthesized and evaluated for their anti-retrovirus activity [against human immunodeficiency virus (HIV) and murine Moloney sarcoma virus (MSV)]. Based on their 50% effective doses the most potent inhibitors of HIV replication in human MT4 lymphocytes were: FddThd (0.001 microM), AzddThd (0.004 microM), FddUrd (0.04 microM) and AzddUrd (0.36 microM). Their selectivity indexes were 197, 5000, 500 and 677, respectively. In contrast, none of the 3'-substituted ddEtUrd derivatives had a marked antiviral effect. The 2',3'-dideoxynucleoside analogues showed poor, if any, substrate affinity for (bacterial) dThd phosphorylase. AzddThd and FddThd inhibited human dThd kinase to a much greater extent (Ki/Km: 0.66 and 3.4, respectively) than did AzddUrd or FddUrd (Ki/Km: 71 and 171, respectively). The Ki/Km values of FddCyd and AzddCyd for human dCyd kinase were about 60. Although phosphorylation is a prerequisite for the anti-retrovirus activity of the 2',3'-dideoxynucleoside derivatives, there is no close correlation between the anti-retrovirus potency of the 3'-fluoro- and 3'-azido-substituted ddUrd, ddThd, ddEtUrd and ddCyd derivatives and their affinity for dThd kinase or dCyd kinase.  相似文献   

3.
4.
The novel 5-chloro-, 5-bromo-, and 5-iodo-derivatives of 3'-fluoro-2',3'-dideoxyuridine (FddUrd), designated FddCIUrd, FddBrUrd, and FddIUrd, respectively, have been synthesized and evaluated for their antiretrovirus activity against human immunodeficiency virus (HIV) and murine Moloney sarcoma virus. All three 5-halogeno-FddUrd analogues inhibited HIV-1 replication in MT4 cells with an effective dose (ED50) of about 0.2-0.4 microM. However, FddCIUrd was markedly more selective in its anti-HIV-1 activity than FddBrUrd or FddIUrd. The selectivity index of FddCIUrd was similar to that of 3'-azido-2',3'-dideoxythymidine (AZT) when evaluated in parallel (1408 and 1603, respectively). The FddUrd derivatives also had a marked inhibitory effect on HIV-2 replication in MT4 cells and HIV-1 induced antigen expression in HUT-78 cells. However, neither FddUrd nor its 5-halogeno derivatives were inhibitory to Moloney sarcoma virus-induced transformation of murine C3H cells. The anti-HIV-1 activity of FddUrd, FddCIUrd, FddBrUrd, and FddIUrd was reversed by the addition of thymidine and 2'-deoxycytidine. The 5-halogeno-FddUrd analogues had a markedly higher affinity for MT4 thymidine kinase than FddUrd (Ki/Km, 4.0-4.7, as compared with 302 for FddUrd).  相似文献   

5.
6.
A variety of semisynthetic derivatives of natural antibacterial glycopeptide antibiotics such as vancomycin, eremomycin, ristocetin A, teicoplanin A(2)-2, DA-40926, their aglycons, and also the products of their partial degradation with a destroyed or modified peptide core show marked anti-retroviral activity in cell culture. In particular, aglycon antibiotic derivatives containing various substituents of a preferably hydrophobic nature displayed activity against human immunodeficiency virus type 1 (HIV-1), HIV-2, and Moloney murine sarcoma virus at a 50% inhibitory concentration in the lower micromolar (1-5 microM) concentration range while not being cytostatic against human lymphocytic cells at 250 microM or higher. The mode of anti-HIV action of the antibiotic aglycon derivatives could be ascribed to inhibition of the viral entry process.  相似文献   

7.
8.
A series of 2',3'-unsaturated and 3'-substituted 2',3'-dideoxynucleoside analogues of purines and pyrimidines have been synthesized and evaluated for their inhibitory activity against human immunodeficiency virus (HIV). The 2',3'-unsaturated analogues of 2',3'-dideoxycytidine (ddeCyd) and 2',3'-dideoxythymidine (ddeThd), 3'-azido-2',3'-dideoxythymidine (AzddThd), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine (ddCyd), and 2',3'-dideoxyadenosine (ddAdo) emerged as the most potent inhibitors of HIV-induced cytopathogenicity in the human T lymphocyte cell lines ATH8 and MT4. In ATH8 cells ddCyd, ddeCyd, and ddAdo had the highest therapeutic index whereas in MT4 cells AzddThd, ddThd, ddCyd, and ddAdo were the most selective. Derivatives from ddThd in which the substituent group was linked to the 3'-carbon atom via a thio, sulfonyl, or oxygen bridge were far less inhibitory to HIV than was AzddThd.  相似文献   

9.
The antiretroviral action of 2',3'-dideoxycytidine (ddCyd) depends on its intracellular conversion to the 5'-triphosphate metabolite ddCTP. The effect of natural pyrimidines and pyrimidine nucleosides, as well as of a number of inhibitors of pyrimidine nucleotide synthesis (i.e., N-(phosphonacetyl)-L-aspartate, 6-azauridine, pyrazofurin, 3-deazauridine, and hydroxyurea) on the metabolism of the potent anti-human immunodeficiency virus drug ddCyd has been investigated in human and murine cell lines. Deoxycytidine (dCyd) and cytidine (Cyd) effectively blocked the intracellular phosphorylation of ddCyd: dCyd by competition with ddCyd for 2'-deoxycytidine kinase, and Cyd probably by competition with the higher nucleoside mono- and diphosphate kinases. These conclusions are supported by the observations that (i) the cytostatic effects of ddCyd against human Molt/4F cells are significantly reversed by dCyd; (ii) the antiviral effects of ddCyd against hman immunodeficiency virus-infected human ATH8 cells are reversed by dCyd and Cyd; (iii) phosphorylated metabolites of ddCyd could not be detected in a 2'-deoxycytidine kinase-deficient murine leukemia (L1210)/araC cell line; and (iv) ddCyd lacked any cytostatic effect against this araC-resistant L1210 cell line. In contrast to dCyd and Cyd, thymidine (dThd) stimulated formation of phosphorylated ddCyd metabolites. The degree of this stimulation proved dependent on preincubation time and dThd concentration. There was a correlation between the increased ddCTP levels upon preincubation of the cells with dThd, and decreased dCyd-5'-triphosphate pools, presumably caused by inhibition of cytidine-5' -diphosphate reductase by dThd-5'-triphosphate. In an attempt to discover compounds other than dThd that are able to stimulate ddCTP formation, a number of inhibitors of pyrimidine nucleotide metabolism were also studied. Under our experimental conditions, 3-deazauridine and hydroxyurea proved equally as effective as dThd in stimulating ddCyd phosphorylation. Finally, we could demonstrate that dThd significantly enhanced the protective effect of ddCyd against human immunodeficiency virus-infected ATH8 cells.  相似文献   

10.
2,4-Diamino-6-hydroxypyrimidines substituted in position 5 by an allyl, benzyl, cyanomethyl, ethoxycarbonylmethyl, phenyl, cyclopropyl, or methyl group were prepared either by C5-alkylation or by formation of the pyrimidine ring by cyclization. Their alkylation with 2-[(diisopropoxyphosphoryl)methoxy]ethyl tosylate afforded N1- and O6-regioisomers that were separated and converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. Reaction of 2,4-diamino-6-[[(diisopropoxyphosphoryl)methoxy]ethoxy]pyrimidine with elemental bromine, N-chloro-, or N-iodosuccinimide gave the corresponding phosphorus-protected 5-bromo-, 5-chloro-, and 5-iodo derivatives, respectively. Their deprotection afforded 2,4-diamino-5-bromo- and -5-chloro-6-[2-(phosphonomethoxy)ethoxy]pyrimidines. 2,4-Diamino-5-methyl-6-[2-(phosphonomethoxy)ethoxy]pyrimidine was synthesized also by cross-coupling of the 5-bromo compound with AlMe(3), followed by deprotection. The compounds showed poor, if any, inhibitory activity against DNA viruses such as herpes simplex virus type 1 and type 2, cytomegalovirus, varicella-zoster virus, and vaccinia virus. In contrast, several 5-substituted 2,4-diaminopyrimidine derivatives markedly inhibited retrovirus replication in cell culture. The 5-methyl derivative was exquisitely inhibitory to human immunodeficiency virus and Moloney murine sarcoma virus-induced cytopathicity in cell culture (EC(50) approximately 0.00018 mumol/mL) but also cytostatic to CEM cell cultures. In contrast, the 5-halogen-substituted derivatives showed pronounced antiretroviral activity (EC(50) = 0.0023-0.0110 mumol/mL), comparable to that of the reference drugs adefovir and tenofovir, but were devoid of measurable toxicity at 0.3 mumol/mL.  相似文献   

11.
The 5'-azidonucleosides 3 and 4 were obtained by treating thymidine and 2'-deoxyuridine with TPP/DEAD/HN3. The 3'-O-silylated 5'-azido-5'-deoxythymidine 5 and the corresponding 2'-deoxyuridine derivative 6 were transformed to the formamides (7 and 8, respectively) and dehydrated to the protected 5'-isocyano derivatives 9 and 10; deblocking gave 5'-isocyano-5'-deoxythymidine (11) and 5'-isocyano-2',5'-dideoxyuridine (12). 2,3'-Anhydro-5'-formamido derivatives of thymidine and 2'-deoxyuridine (19 and 20, respectively) were prepared by three different ways. In the most direct synthesis 3 and 4 were transformed to the 2,3'-anhydro-5'- azidonucleosides 17 and 18 by using TPP/DEAD; following the reaction with TPP/HCO2COCH3 gave 19 and 20. Nucleophilic opening reaction with LiN3 yielded the 3'-azido-5'-formylamino derivatives 21 and 22. Dehydration to 3'-azido-5'-isocyano-3',5'-dideoxythymidine (23) and 3'-azido-5'-isocyano-2',3',5'-trideoxyuridine (24) was achieved with tosyl chloride/pyridine. In contrast with 3'-azido-3'-deoxythymidine, compounds 11, 12, 23, and 24 were devoid of any marked inhibitory effect against DNA and RNA viruses including human immunodeficiency virus type I (HIV).  相似文献   

12.
13.
14.
15.
16.
17.
18.
The novel fluorinated and iodinated purine derivatives containing 9-(2-hydroxypropyl) (1a-7a and 9a-13a) and 9-(2-hydroxyethoxymethyl) (1b-3b, 5b, and 7b-12c) side chains were synthesized by a multistep synthetic route involving Baltz-Schiemann's fluorination and diazotation/iodination as key reactions. An unequivocal proof for the stereostructure of 5b was obtained by X-ray structure analysis. New compounds were evaluated for their cytostatic activity against murine leukemia (L1210); mammary carcinoma (FM3A); and human T-lymphocytes (Molt4/C8 and CEM), melanoma (HBL), cervical carcinoma (HeLa), colon carcinoma (HT29 and SW620), laryngeal carcinoma (Hep2), and pancreatic carcinoma (MiaPaCa2) as well as diploid fibroblasts (WI38). Of all the compounds, the 2-aminopurin-6-thione derivative 9a showed the most pronounced inhibitory activity against human SW620 cells. The 2-aminopurin-6-thione derivative 9b exhibited the most selective inhibitory activity against human HeLa, Hep2, SW620, and murine L1210 cell proliferation as compared to normal fibroblast (WI38) cell proliferation. None of the compounds showed inhibitory activities against HIV-1, HIV-2, HSV-1, and HSV-2, vaccinia, vesicular stomatitis, parainfluenza-3, reovirus-1, Sindbis, Coxsackie B4, or respiratory syncytial virus. The new purine derivatives, and particularly 9a and 9b, appear to demonstrate sufficient cytostatic potency and selectivity to justify further evaluation of their potential.  相似文献   

19.
Beginning with 3-cyclopenten-1-ylamine hydrochloride, the 5'-nor derivatives of carbocyclic 2'-deoxyguanosine (2), 2'-deoxyadenosine (3), and 2,6-diaminopurine 2'-deoxyribofuranoside (4) have been prepared. These compounds were evaluated for antiviral potential versus herpes simplex virus, varicella-zoster virus, cytomegalovirus, vaccinia virus, vesicular stomatitis virus, and human immunodeficiency virus and found to lack activity. Also, compounds 2-4 were virtually nontoxic toward the host (human diploid fibroblast ESM and HEL) cells. These biological properties may be due to the inability of 2-4 to be phosphorylated to the requisite nucleotide level that is likely to be necessary for biological activity by correlation to carbocyclic 2'-deoxyguanosine (1), which possesses significant antiviral properties as a result of conversion to its 5'-triphosphate derivative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号