首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and/or glial cells: the solute carrier (SLC)1 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of glutamate, and the SLC6 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of dopamine, 5-HT, norepinephrine, glycine and GABA. Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters to be generated. These models should be an important tool for developing specific drugs that, through selective interaction with transporters, could improve the treatment of serious neurological and psychiatric disorders.  相似文献   

2.
5-羟色胺转运蛋白(serotonin transporter,SERT)和去甲肾上腺素转运蛋白(norepinephrine transporter,NET)是单胺类神经递质转运体,其功能是将释放到突触间隙的5-羟色胺(serotonin,5-HT)和去甲肾上腺素(norepinephrine,NE)分别转运入突触前神经细胞,以终止相应的突触信号传递。SERT、NET抑制剂可阻断5-HT和NE的重摄取,提高突触间隙单胺递质水平,从而发挥抗抑郁效应。SERT、NET作为主流抗抑郁药物的作用靶标,了解其分布与功能、分子结构和活性调节因素,以及单胺重摄取抑制剂的作用机制对抗抑郁药物研发及应用具有重要意义。  相似文献   

3.
The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties of the SLC6 family transporters. LINKED ARTICLES BJP published a themed section on Transporters in 2011. To view articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2011.164.issue-7/issuetoc.  相似文献   

4.
Biogenic amine neurotransmitters are released from nerve terminals and activate pre- and postsynaptic receptors. Released neurotransmitters are sequestered by transporters into presynaptic neurons, a major mode of their inactivation in the brain. Genetic studies of human biogenic amine transporter genes, including the dopamine transporter (hDAT; SLC6A3), the serotonin transporter (hSERT; SLC6A4), and the norepinephrine transporter (hNET; SLC6A2) have provided insight into how genomic variations in these transporter genes influence pharmacology and brain physiology. Genetic variants can influence transporter function by various mechanisms, including substrate affinities, transport velocity, transporter expression levels (density), extracellular membrane expression, trafficking and turnover, and neurotransmitter release. It is increasingly apparent that genetic variants of monoamine transporters also contribute to individual differences in behavior and neuropsychiatric disorders. This chapter summarizes current knowledge of transporters with a focus on genomic variations, expression variations, pharmacology of protein variants, and known association with human diseases.  相似文献   

5.
The amino acid glycine (Gly) serves as a neurotransmitter at excitatory and inhibitory synapses in the mammalian central nervous system. Gly concentrations at post-synaptic neurotransmitter receptors are regulated by Na+/Cl(-)-dependent Gly transporters, which are expressed in neurons and in glial cells. Recent evidence suggests that these transporters are promising targets for the treatment of psychiatric and neurological disorders, such as schizophrenia and pain. Here, recent research on the structure, regulation and pharmacology of mammalian Gly transporters is reviewed.  相似文献   

6.
The extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6 transporters has recently been identified in prokaryotes. Here we have probed structural relationships in a 'microdoman' corresponding to the extracellular ends of transmembrane segments (TM) 7 and 8 in one of these homologs, the tryptophan transporter TnaT from Symbiobacterium thermophilum. We found that simultaneous - but not individual - substitution of Ala286 at the top of TM7 and Met311 at the top of TM8 with cysteines conferred sensitivity to submicromolar concentrations of Hg(2+) as assessed in a [(3)H]tryptophan uptake assay. Because Hg(2+) can cross-link pairs of cysteines, this suggests close proximity between TM 7 and 8 in the tertiary structure of TnaT as previously suggested for the mammalian counterparts. Furthermore, the inhibition of uptake upon cross-linking the two cysteines provides indirect support for a conserved conformational role of these transmembrane domains in the transport process. It was not possible, however, to transfer to TnaT binding sites for another metal ion, Zn(2+), that we previously engineered in the dopamine (DAT) and GABA (GAT-1) transporters between TM 7 and 8. This suggests that the structure of the TM7/8 microdomain is not identical with that of DAT and GAT-1. Hence, our data also emphasize possible structural differences that should be taken into account when interpreting future data on bacterial homologs of the SLC6 transporters.  相似文献   

7.
The Na+/Cl-dependent neurotransmitter transporters, a family of proteins responsible for the reuptake of neurotransmitters and other small molecules from the synaptic cleft, have been the focus of intensive research in recent years. The biogenic amine transporters, a subset of this larger family, are especially intriguing as they are the targets for many psychoactive compounds, including cocaine and amphetamines, as well as many antidepressants. In the absence of a high-resolution structure for any transporter in this family, research into the structure-function relationships of these transporters has relied on analysis of the effects of site-directed mutagenesis as well as of chemical modification of reactive residues. The aim of this review is to establish a structural context for the experimental study of these transporters through various computational approaches and to highlight what is known about the conformational changes associated with function in these transporters. We also present a novel numbering scheme to assist in the comparison of aligned positions between sequences of the neurotransmitter transporter family, a comparison that will be of increasing importance as additional experimental data is amassed.  相似文献   

8.
The synaptic actions of most neurotransmitters are inactivated by reuptake into the nerve terminals from which they are released, or by uptake into adjacent cells. A family of more than 20 transporter proteins is involved. In addition to the plasma membrane transporters, vesicular transporters in the membranes of neurotransmitter storage vesicles are responsible for maintaining vesicle stores and facilitating exocytotic neurotransmitter release. The cell membrane monoamine transporters are important targets for CNS drugs. The transporters for noradrenaline and serotonin are key targets for antidepressant drugs. Both noradrenaline-selective and serotonin-selective reuptake inhibitors are effective against major depression and a range of other psychiatric illnesses. As the newer drugs are safer in overdose than the first-generation tricyclic antidepressants, their use has greatly expanded. The dopamine transporter (DAT) is a key target for amphetamine and methylphenidate, used in the treatment of attention deficit hyperactivity disorder. Psychostimulant drugs of abuse (amphetamines and cocaine) also target DAT. The amino-acid neurotransmitters are inactivated by other families of neurotransmitter transporters, mainly located on astrocytes and other non-neural cells. Although there are many different transporters involved (four for GABA; two for glycine/D-serine; five for L-glutamate), pharmacology is less well developed in this area. So far, only one new amino-acid transporter-related drug has become available: the GABA uptake inhibitor tiagabine as a novel antiepileptic agent.  相似文献   

9.
Amino acids are essential building blocks of all mammalian cells, and amino acid transporters play a vital role in transporting them into cells and their further distribution among the various cellular compartments. There are ~?430 known transporters in the solute-linked carrier (SLC) gene family, divided into 52 distinct families. Eleven of these gene families contain one or more amino acid transporters. These transporters differ significantly from each other in terms of substrate specificity, ion dependence, and energetics. Given the variety of roles they fulfill in human physiology, it is not surprising that a number of diseases are associated with the malfunction of these transporters. In particular, as amino acids are critical for cell growth, survival, and proliferation, the role of amino acid transporters in cancer is gaining increasing attention in recent years. The present review primarily focuses on one particular amino acid transporter, SLC6A14 (also known as ATB0,+), with regard to its relevance to specific diseases, including cancer, and the molecular mechanisms underlying the disease-related alterations in the expression of the transporter. Furthermore, the review highlights the possible utility of this transporter in drug delivery and also its therapeutic potential for the treatment and diagnosis of cancer.  相似文献   

10.
Central nervous system (CNS) selective amino acid transporters provide an important function in maintaining tonic extracellular levels of amino acids that act as neurotransmitters, synaptic modulators or neurotransmitter precursors. Small molecule inhibitors of these transporters have been postulated and in some cases demonstrated to be useful in the treatment of a range of CNS driven disorders such as epilepsy, anxiety, psychosis, depression, pain and neurodegenerative disease. Although much of the research to date in this field has focussed on inhibition of the gama-amino butyric acid (GABA) transporters more recent reports have also generated interest in modulation of glycine, glutamate and proline transporters. This article will review the current medicinal chemistry literature and structure activity relationships known for mammalian CNS selective amino acid transporters.  相似文献   

11.
Solute carrier (SLC) proteins have critical physiological roles in nutrient transport and may be utilized as a mechanism to increase drug absorption. However, we have little understanding of these proteins at the molecular level due to the absence of high-resolution crystal structures. Numerous efforts have been made in characterizing the peptide transporter (PepT1) and the apical sodium dependent bile acid transporter (ASBT) that are important for both their native transporter function as well as targets to increase absorption and act as therapeutic targets. In vitro and computational approaches have been applied to gain some insight into these transporters with some success. This represents an opportunity for optimizing molecules as substrates for the solute transporters and providing a further screening system for drug discovery. Clearly the future growth in knowledge of SLC function will be led by integrated in vitro and in silico approaches.  相似文献   

12.
Following exocytotic release, the biogenic amine neurotransmitters, norepinephrine, dopamine, and serotonin are removed from the synaptic cleft by the respective transporter, NET, DAT, and SERT, located on the plasma membrane and then re-stored into synaptic vesicles by vesicular monoamine transporter, VMAT. The molecular cloning of these transporters revealed that NET, DAT, and SERT are members of a sodium-dependent neurotransmitter transporter gene family, while VMATs arise from proton-dependent transporter gene family. Structural features common to NET, DAT, and SERT reveal a putative 12 transmembrane-spanning domain structure with cytosolic N- and C-terminal regions. Recent evidence suggest the regulation of the functional expression of these transporters via phosphorylation, which include direct phosphorylation of transporter proteins and/or of associated proteins that may control transporter function/expression. In addition, the substrates and inhibitors for these transporters appear capable of regulating transporter cell surface expression, thereby suggesting both activity-dependent and pharmacological regulatory mechanisms for transporter expression. Analyses of the genes provide new insight into their relation to neuronal diseases since NET, DAT and SERT are the molecular targets for many antidepressants as well as drugs of abuse such as cocaine and amphetamine. The availability of cDNAs of these and vesicular transporters has permitted detailed pharmacological studies in heterologous expression systems, and thus would promise the development of novel drugs with diverse chemical structures.  相似文献   

13.
14.
Trace amines (TAs) are endogenous compounds that are related to biogenic amine neurotransmitters and are present in the mammalian nervous system in trace amounts. Although their pronounced pharmacological effects and tight link to major human disorders such as depression and schizophrenia have been studied for decades, the understanding of their molecular mode of action remained incomplete because of the apparent absence of specialized receptors. However, the recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. The unique pharmacology and expression pattern of these receptors make them prime candidates for targets in drug development in the context of several neurological diseases. Current research focuses on dissecting their molecular pharmacology and on the identification of endogenous ligands for the apparently TA-insensitive members of this receptor family.  相似文献   

15.
Vectorial secretion of cationic compounds across tubular epithelial cells is an important function of the kidney. This uni-directed transport is mediated by two cooperative functions, which are membrane potential-dependent organic cation transporters at the basolateral membranes and H+/organic cation antiporters at the brush-border membranes. More than 10 years ago, the basolateral organic cation transporters (OCT1-3/SLC22A1-3) were isolated, and molecular understandings for the basolateral entry of cationic drugs have been greatly advanced. However, the molecular nature of H+/organic cation antiport systems remains unclear. Recently, mammalian orthologues of the multidrug and toxin extrusion (MATE) family of bacteria have been isolated and clarified to function as H+/organic cation antiporters. In this commentary, the molecular characteristics and pharmacokinetic roles of mammalian MATEs are critically overviewed focusing on the renal secretion of cationic drugs.  相似文献   

16.
Monoamine transporters are primary targets for the action of many psychoactive compounds including the most commonly used antidepressants and widely abused drugs, such as cocaine and amphetamine. Consequently, these transporters are the focus of continuous intensive research. Over the last couple of years, these efforts have resulted in significant progress both in our understanding of their role in drug abuse mechanisms and of the structural basis that underlies their capability as transporters to translocate their substrate across the plasma membrane. The aim of this review is to describe both the current awareness regarding the structural organization of the monoamine neurotransmitter transporters as well as the molecular mechanisms responsible for function, with specific emphasis on conformational changes and putative gating mechanisms.  相似文献   

17.
X-ray crystallography, structural bioinformatics and computational chemistry have become important techniques in the discovery and development of effective and safe new drugs. From a drug discovery point of view, membrane proteins are among the most interesting molecular targets, but the current knowledge about detailed 3D structures of membrane proteins is sparse. Homology modeling techniques may provide structural knowledge about membrane proteins and their interactions with drugs and other molecules. The neurotransmitter sodium symporters (NSS) are the molecular targets of many pharmacologically active substances, and we have used three different secondary transporters as templates for modeling the NSS proteins DAT, NET and SERT. The first template was based on the electron density projection map of the Escherichia coli Na+/H+ antiporter (NhaA), while later the X-ray structure of Lac Permease (symporter) was used as a template. The helical architectures of these templates have a lot in common, and models based on both could contribute with structural explanations of several experimental studies in spite of low homology with NSS proteins. In 2005 the crystal structure of a bacterial homologue of the human monoamine neurotransmitter transporter Aquifex aeolicus (LeuTAa) was reported. This structure was the first experimental structure of a NSS family member, and represented a breakthrough for homology modeling of pharmacological important NSS proteins. Since then several X-ray structures LeuTAa in complex with pharmacologically important compounds have been published. Homology models of NSS proteins, combined with site-directed mutagenesis data, have identified ligand binding sites and contributed with important knowledge for new drug development.  相似文献   

18.
Cynomolgus macaques are used in preclinical studies in part because of their evolutionary closeness to humans. However, drug transporters [including solute carrier (SLC) transporters] essential for the absorption and excretion of drugs have not been fully investigated at the molecular level in cynomolgus macaques. We identified and characterized cynomolgus macaque SLC15A1, SLC15A2, SLC22A1, SLC22A2, SLC22A6, SLC22A8, SLC47A1, and SLC47A2, along with SLCO (formerly SLC21A) transporters SLCO1A2, SLCO1B1, SLCO1B3, and SLCO2B1. These cynomolgus SLC transporters had high amino acid sequence identities (92–97%) with their human orthologs and contained sequence motifs characteristic of SLC transporters. Phylogenetic analysis showed that these cynomolgus SLC transporters were more closely clustered with their human orthologs than with those of dogs, rats, or mice. Gene structure and genomic organization were similar in macaques and humans. Cynomolgus SLC transporter mRNAs showed distinct tissue expression patterns, being most abundantly expressed in jejunum (SLC15A1), liver (SLC22A1, SLCO1B1, and SLCO2B1), and kidney (SLC15A2, SLC22A2, SLC22A6, SLC22A8, SLC47A1, SLC47A2, and SLCO1A2). In contrast, cynomolgus SLCO2B1 mRNA was more ubiquitously expressed. Among these SLC mRNAs, the most abundant in liver was SLCO1B1, in jejunum SLC15A1, and in kidney SLC22A2. These results suggest similar characteristics of SLC transporters in cynomolgus macaques and humans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号