首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that myelin-forming oligodendrocytes express the protein tyrosine phosphatase SHP-1 and that myelin formation was decreased in SHP-1-deficient motheaten mice compared to that in normal littermates. These studies suggested a potential importance for SHP-1 in oligodendrocyte and myelin development. To address further this possibility, we analyzed myelin formation by microscopy and myelin basic protein (MBP) gene expression in motheaten mice at ages when myelination occurs in the developing central nervous system (CNS). Furthermore, we correlate these findings with MBP gene expression in oligodendrocytes grown in vitro. We have found that CNS myelination was significantly reduced in SHP-1-deficient mice relative to their normal littermates at multiple times during the active period of myelination. Under electron microscopy, greater numbers of axons in spinal cords of motheaten mice were either unmyelinated or had thinner myelin sheathes compared to those in matched areas of normal littermates. Accordingly, MBP protein and mRNA levels were reduced in SHP-1-deficient mice compared to that in the CNS of normal littermates. In vitro, O1(+) oligodendrocytes from motheaten mice expressed much less MBP than O1(+) oligodendrocytes of normal littermates indicating an alteration in oligodendrocyte differentiation. The latter correlated with reduced MBP mRNA relative to cerebroside galactosyl transferase (CGT) gene mRNA in SHP-1-deficient oligodendrocytes in purified cultures. We propose that SHP-1 is a critical regulator of developmental signals leading to terminal differentiation and myelin sheath formation by oligodendrocytes.  相似文献   

2.
Bonaparte KL  Hudson CA  Wu C  Massa PT 《Glia》2006,53(8):827-835
We have previously shown that the SH2 domain-containing protein tyrosine phosphatase SHP-1 plays a critical role in controlling virus infection in CNS glia in vivo and in vitro. The present study addressed whether increased virus replication in SHP-1-deficient glia in vitro may be a result of altered expression of inducible nitric oxide synthase (iNOS/NOS2). First, we observed a profound reduction in iNOS protein expression and production of nitric oxide (NO) in response to the viral mimic double-stranded RNA (dsRNA), despite the induction of high levels of iNOS mRNA, in SHP-1-deficient motheaten mouse compared to wild type littermate mouse glia. Because both iNOS expression and NO production are suppressed by multiple pathways involving arginase I activity, it was important that we observed abnormally high constitutive expression of arginase I in cultured glia of SHP-1-deficient compared to wild type mice. Further, both constitutive and IL-4/IL-10-induced expression of arginase I correlated with elevated STAT6 nuclear binding activity, decreased NO production, and increased virus replication in motheaten compared to wild type astrocytes. These findings provide the first evidence of an inverse relationship between NO and arginase I activity regulated by SHP-1 in CNS glia that is relevant to modulation of innate anti-viral responses. Thus, we propose that SHP-1 is a critical regulator of innate immunity to virus infections in CNS cells.  相似文献   

3.
Tuohy TM  Wallingford N  Liu Y  Chan FH  Rizvi T  Xing R  Bebo B  Rao MS  Sherman LS 《Glia》2004,47(4):335-345
The CD44 transmembrane glycoprotein family has been implicated in cell-cell adhesion and cell signaling in response to components of the extracellular matrix but its role in the nervous system is not understood. CD44 proteins are elevated in Schwann cells and oligodendrocytes following nervous system insults, in inflammatory demyelinating lesions, and in tumors. Here, we tested the hypothesis that elevated CD44 expression influences Schwann cell and oligodendrocyte functions by generating transgenic mice that express CD44 under the control of the 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) promoter. These mice failed to develop peripheral nerve or CNS tumors. However, they did develop severe tremors that were associated with CNS dysmyelination and progressive demyelination. Loss of CNS myelin was not due to alterations in early oligodendrocyte precursor differentiation, proliferation, or survival. Myelination in the PNS appeared normal. In no instance was there any evidence of an inflammatory response that could account for the loss of CNS myelin. These findings suggest that CNPase-CD44 mice are a novel model for noninflammatory progressive demyelinating disease and support a potential role for CD44 proteins expressed by glial cells in promoting demyelination.  相似文献   

4.
Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating oligodendrocytes.  相似文献   

5.
We have previously described reduced myelination and corresponding myelin basic protein (MBP) expression in the central nervous system of Src homology 2 domain‐containing protein tyrosine phosphatase 1 (SHP‐1) deficient motheaten (me/me) mice compared with normal littermate controls. Deficiency in myelin and MBP expression in both brains and spinal cords of motheaten mice correlated with reduced MBP mRNA expression levels in vivo and in purified oligodendrocytes in vitro. Therefore, SHP‐1 activity seems to be a critical regulator of oligodendrocyte gene expression and function. Consistent with this role, this study demonstrates that oligodendrocytes of motheaten mice and SHP‐1‐depleted N20.1 cells produce higher levels of reactive oxygen species (ROS) and exhibit corresponding markers of increased oxidative stress. In agreement with these findings, we demonstrate that increased production of ROS coincides with ROS‐induced signaling pathways known to affect myelin gene expression in oligodendrocytes. Antioxidant treatment of SHP‐1‐deficient oligodendrocytes reversed the pathological changes in these cells, with increased myelin protein gene expression and decreased expression of nuclear factor (erythroid‐2)‐related factor 2 (Nrf2) responsive gene, heme oxygenase‐1 (HO‐1). Furthermore, we demonstrate that SHP‐1 is expressed in human white matter oligodendrocytes, and there is a subset of multiple sclerosis subjects that demonstrate a deficiency of SHP‐1 in normal‐appearing white matter. These studies reveal critical pathways controlled by SHP‐1 in oligodendrocytes that relate to susceptibility of SHP‐1‐deficient mice to both developmental defects in myelination and to inflammatory demyelinating diseases. GLIA 2015;63:1753–1771  相似文献   

6.
The interferon-gamma (IFN-gamma) receptor is expressed by all nucleated cells, and binding of its cognate ligand, IFN-gamma, induces a wide variety of biological functions. Transgenic mice expressing a dominant negative IFN-gamma receptor 1 (IFN-gammaR1DeltaIC) on oligodendrocytes under control of the myelin proteolipid protein promoter are described. The mRNA encoding the transgene was only detected in the nervous system and protein expression was confirmed by immunohistochemistry. Transgenic receptor expression does not alter myelination and the mice exhibited no clinically apparent phenotype. Consistent with the restricted nervous system expression of the transgene, no alterations in peripheral immune responses were detected. Flow cytometric analysis demonstrated constitutive expression of both the IFN-gammaR1DeltaIC transgene and the endogenous IFN-gamma receptor 2 at high levels on oligodendrocytes derived from the transgenic mice. These oligodendrocytes also exhibited decreased STAT1 phosphorylation in response to IFN-gamma, confirming dominant negative transgene function. Transgenic mice in which oligodendrocytes have a diminished ability to respond to IFN-gamma showed delayed virus clearance from oligodendroglia compared with wild-type mice. This model will allow evaluation of oligodendrocyte responses to this critical cytokine during CNS inflammation.  相似文献   

7.
OMgp is selectively expressed in CNS by oligodendrocyte. However, its potential role(s) in oligodendrocyte development and myelination remain unclear. We show that OMgp null mice are hypomyelinated in their spinal cords, resulting in slower ascending and descending conduction velocities compared to wild-type mice. Consistent with the hypomyelination, in the MOG induced EAE model, OMgp null mice show a more severe EAE clinical disease and slower nerve conduction velocity compared to WT animals. The contribution of OMgp to oligodendrocyte differentiation and myelination was verified using cultured oligodendrocytes from null mice. Oligodendrocytes isolated from OMgp null mice show a significant decrease in the number of MBP(+) cells and in myelination compared to wild-type mice. The dramatic effects of the OMgp KO in oligodendrocyte maturation in vivo and in vitro reveal a new and important function for OMgp in regulating CNS myelination.  相似文献   

8.
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) play a critical role in immune‐mediated demyelinating diseases, including multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), by regulating the viability of oligodendrocytes. Our previous studies show that activation of the PERK branch of the UPR protects myelinating oligodendrocytes against ER stress in young, developing mice that express IFN‐γ, a key pro‐inflammatory cytokine in MS and EAE, in the CNS. Several studies also demonstrate that PERK activation preserves oligodendrocyte viability and function, protecting mice against EAE. While evidence suggests activation of the ATF6α branch of the UPR in oligodendrocytes under normal and disease conditions, the effects of ATF6α activation on oligodendrocytes in immune‐mediated demyelinating diseases remain unknown. Herein, we showed that ATF6α deficiency had no effect on oligodendrocytes under normal conditions. Interestingly, we showed that ATF6α deficiency exacerbated ER stressed‐induced myelinating oligodendrocyte death and subsequent myelin loss in the developing CNS of IFN‐γ‐expressing mice. Moreover, we found that ATF6α deficiency increased EAE severity and aggravated EAE‐induced oligodendrocyte loss and demyelination, without affecting inflammation. Thus, these data suggest the protective effects of ATF6α activation on oligodendrocytes in immune‐mediated demyelinating diseases.  相似文献   

9.
Kallikrein 6 (KLK6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of KLK6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke, and glioblastoma. Taken with recent evidence establishing KLK6 as a CNS‐endogenous activator of protease‐activated receptors (PARs), we hypothesized that KLK6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1‐deficient mice and the murine oligodendrocyte cell line, Oli‐neu, were used to demonstrate that Klk6 (rodent form) mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1‐dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1‐activating peptides (PAR1‐APs). Klk6 also exacerbated ATP‐mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1‐mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1‐APs, into the dorsal column white matter of PAR1+/+ but not PAR1?/? mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC‐1+ oligodendrocytes. These results demonstrate a functional role for Klk6‐PAR1 signaling in oligodendroglial pathophysiology and suggest that antagonists of PAR1 or its protease agonists may represent new modalities to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease.  相似文献   

10.
Elevated levels of the inflammatory cytokine interleukin-6 (IL-6) occur in a number of CNS disorders. However, little is known about how this condition affects CNS neuronal function. Transgenic mice that express elevated levels of IL-6 in the CNS show cognitive changes, increased propensity for hippocampal seizures and reduced number of inhibitory interneurons, suggesting that elevated levels of IL-6 can cause neuroadaptive changes that alter hippocampal function. To identify these neuroadaptive changes, we measured the levels of protein expression using Western blot analysis and synaptic function using field potential recordings in hippocampus from IL-6 transgenic mice (IL-6 tg) and their non-transgenic (non-tg) littermates. Western blot analysis showed enhanced levels of the GFAP and STAT3 in the IL-6 tg hippocampus compared with the non-tg hippocampus, but no difference for several other proteins. Field potential recordings of synaptic transmission at the Schaffer collateral to CA1 synapse showed enhanced dendritic excitatory postsynaptic potentials and somatic population spikes in the CA1 region of hippocampal slices from IL-6 tg mice compared with slices from non-tg littermate controls. No differences were observed for several forms of short-term and long-term synaptic plasticity between hippocampal slices from IL-6 tg and non-tg mice. These results demonstrate that elevated levels of IL-6 can alter mechanisms involved in the excitability of hippocampal neurons and synapses, an effect consistent with recent evidence indicating that elevated production of IL-6 plays an important role in conditions associated with seizure activity and in other impairments observed in CNS disorders with a neuroinflammatory component.  相似文献   

11.
Sanz E  Hofer MJ  Unzeta M  Campbell IL 《Glia》2008,56(2):190-199
Interleukin (IL)-6 is a pleiotropic cytokine whose production by astrocytes in the CNS of transgenic mice (termed GF-IL6) causes neuroinflammation and neurodegeneration. The binding of IL-6 to its receptor (IL6R) triggers gp130-mediated activation of STAT1 and STAT3 as well as SHP2 phosphatase and ERK1/2. We determined the relative contribution of STAT1 to IL-6 signaling and actions in vivo in the brain of GF-IL6 mice. GF-IL6 mice that were null for STAT1 (termed GF-IL6STAT1 KO) were viable, bred normally and physically indistinguishable from GF-IL6 controls. The level of phosphotyrosine (p-Y) STAT1 was increased significantly in GF-IL6 mice but not detectable in GF-IL6STAT1 KO animals. Phospho-STAT3 and phospho-ERK1/2 were increased markedly in GF-IL6 mice and were not altered by the absence of STAT1. Both the density and distribution of phospho-STAT3-positive cells (mainly astrocytes, microglia and endothelial cells) was similar in GF-IL6 and GF-IL6STAT1 KO mice. Despite a minor decrease in IL-1 and TNF mRNA, the overall inflammatory phenotype of GF-IL6 mice was not altered significantly by the absence of STAT1. IFN-regulated genes activated by STAT1 homodimers via the GAS element (e.g. CXCL9) showed a small increase in GF-IL6 but not GF-IL6STAT1 KO animals. When compared with transgenic mice with astrocyte-targeted production of the type I IFN, IFN-alpha, the increased levels of p-Y-STAT1 and IFN-regulated gene expression were considerably lower in GF-IL6 mice. In conclusion, although IL-6 can activate STAT1 this plays minimal, if any, role in IL-6 signaling and actions in the CNS.  相似文献   

12.
Magnotti LM  Goodenough DA  Paul DL 《Glia》2011,59(7):1064-1074
CNS glia exhibit a variety of gap junctional interactions: between neighboring astrocytes, between neighboring oligodendrocytes, between astrocytes and oligodendrocytes, and as 'reflexive' structures between layers of myelin in oligodendrocytes. Together, these junctions are thought to form a network facilitating absorption and removal of extracellular K(+) released during neuronal activity. In mice, loss of the two major oligodendrocyte connexins causes severe demyelination and early mortality, while loss of the two major astrocyte connexins causes mild dysmyelination and sensorimotor impairment, suggesting that reflexive and/or oligo-oligo coupling may be more important for the maintenance of myelin than other forms. To further explore the functional relationships between glial connexins, we generated double knockout mice lacking one oligodendrocyte and one astrocyte connexin. Cx32-Cx43 dKO animals develop white matter vacuolation without obvious ultrastructural abnormalities in myelin. Progressive loss of astrocytes but not oligodendrocytes or microglia accompanies sensorimotor impairment, seizure activity and early mortality at around 16 weeks of age. Our data reveal an unexpected role for connexins in the survival of white matter astrocytes, requiring the expression of particular isoforms in both oligodendrocytes and astrocytes.  相似文献   

13.
Multiple sclerosis (MS) is an immune-mediated demyelinating condition in which numerous soluble mediators have been implicated. We have extended the repertoire of cytokines studied in MS tissue by examining interleukin (IL-4), IL-6, IL-10, IL-12, IL-18, interferon (IFNgamma), and their receptors and have compared patterns with those seen in normal subjects and other neurological diseases (OND). Expression was evaluated by immunocytochemistry and Western blots. Remarkably, oligodendrocytes expressed all the cytokine receptors examined, particularly Th2-type, constitutively in normal subjects and upregulated in disease. Microglial cells also expressed cytokine receptors at similar levels. Cytokine expression was invariably a feature of microglial cells, except for IL-10, which was exclusively astrocytic. Oligodendrocytes did not display cytokines, except for low levels of IL-18. Although no pattern was specific for MS, most molecules were upregulated in MS and OND. Downstream JAK/STAT molecules were correspondingly upregulated. Cytokine receptors on oligodendrocytes (and microglia), and their corresponding ligands on microglia (and astrocytes), may implicate paracrine/autocrine regulation and may bespeak innate immunity in the central nervous system.  相似文献   

14.
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.  相似文献   

15.
Oligodendrocytes generate myelin sheaths vital for the formation, health, and function of the CNS. Myelin sheath length is a key property that determines axonal conduction velocity and is known to be variable across the CNS. Myelin sheath length can be modified by neuronal activity, suggesting that dynamic regulation of sheath length might contribute to the functional plasticity of neural circuits. Although the mechanisms that establish and refine myelin sheath length are important determinants of brain function, our understanding of these remains limited. In recent years, the membranes of myelin sheaths have been increasingly recognized to contain ion channels and transporters that are associated with specific important oligodendrocyte functions, including metabolic support of axons and the regulation of ion homeostasis, but none have been shown to influence sheath architecture. In this study, we determined that hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels, typically associated with neuronal and cardiac excitability, regulate myelin sheath length. Using both in vivo and in vitro approaches, we show that oligodendrocytes abundantly express functional, predominantly HCN2 subunit-containing ion channels. These HCN ion channels retain key pharmacological and biophysical features and regulate the resting membrane potential of myelinating oligodendrocytes. Further, reduction of their function via pharmacological blockade or generation of transgenic mice with two independent oligodendrocyte-specific HCN2 knock-out strategies reduced myelin sheath length. We conclude that HCN2 ion channels are key determinants of myelin sheath length in the CNS.SIGNIFICANCE STATEMENT Myelin sheath length is a critical determinant of axonal conduction velocity, but the signaling mechanisms responsible for determining sheath length are poorly understood. Here we find that oligodendrocytes express functional hyperpolarization-activated, cyclic nucleotide-gated 2 (HCN2) ion channels that regulate the length of myelin sheaths formed by oligodendrocytes in myelinating cultures and in the mouse brain and spinal cord. These results suggest that the regulation of HCN2 channel activity is well placed to refine sheath length and conduction along myelinated axons, providing a potential mechanism for alterations in conduction velocity and circuit function in response to axonal signals such as those generated by increased activity.  相似文献   

16.
Role for CXCR2 and CXCL1 on glia in multiple sclerosis   总被引:1,自引:0,他引:1  
Omari KM  John G  Lango R  Raine CS 《Glia》2006,53(1):24-31
As part of a need to understand myelin repair mechanisms, molecular pathways underlying oligodendrocyte behavior and central nervous system (CNS) remyelination are currently key topics in multiple sclerosis (MS). In the present study, we report expression of a chemoattractant receptor of the immune system, the chemokine receptor, CXCR2, on normal and proliferating oligodendrocytes in active MS lesions. Proliferating oligodendrocytes were occasionally associated with reactive astrocytes positive for CXCL1 (GRO-alpha), the ligand for CXCR2. CXCL1 expression was not seen on astrocytes in control and normal CNS tissue, while CXCR2 expression was constitutive on oligodendrocytes. At the functional level, following stimulation with the proinflammatory cytokine, interleukin-1beta (IL-1beta), we found high-level synthesis of CXCL1 by human fetal astrocytes in vitro. In contrast, human oligodendrocytes in culture expressed the receptor, CXCR2, constitutively. We propose that the concurrence of CXCR2 on oligodendrocytes and induced CXCL1 on hypertrophic astrocytes in MS provides a novel mechanism for recruitment of oligodendrocytes to areas of damage, an essential prerequisite for lesion repair in this devastating human condition.  相似文献   

17.
18.
Oligodendrocytes and ischemic brain injury.   总被引:16,自引:0,他引:16  
Oligodendrocytes, myelin-forming glial cells of the central nervous system, are vulnerable to damage in a variety of neurologic diseases. Much is known of primary myelin injury, which occurs in settings of genetic dysmyelination or demyelinating disease. There is growing awareness that oligodendrocytes are also targets of injury in acute ischemia. Recognition of oligodendrocyte damage in animal models of ischemia requires attention to their distinct histologic features or use of specific immunocytochemical markers. Like neurons, oligodendrocytes are highly sensitive to injury by oxidative stress, excitatory amino acids, trophic factor deprivation, and activation of apoptotic pathways. Understanding mechanisms of oligodendrocyte death may suggest new therapeutic strategies to preserve or restore white matter function and structure after ischemic insults.  相似文献   

19.
Oligodendrocytes and myelin were purified from the cerebra of quaking mice and their littermate controls (11-60 days of age) after injecting the animals intraperitoneally with U-14C-glucose. A peak of incorporation of radioactivity in the lipid extract of oligodendrocytes of both quaking and normal mice at 16-18 days of age was found, suggesting that the onset of myelination in the cerebra starts approximately at the same time for quaking mice and their littermate controls. Nevertheless the level of incorporation per cell was lower in the oligodendrocytes of quaking mice (50% of the control). The pattern of incorporation into myelin during development was similar between the two strains, but the specific activity as measured in dpm/mg protein was higher in the myelin of young quaking animals (up to 16 days). Peaks of incorporation were found in cerebrosides and sulfatides of oligodendrocytes and myelin in normal controls at 18 days. In the quaking mice these peaks were absent in oligodendrocytes and much delayed in the myelin of the mutant. The results would suggest that the defect in the quaking mutant in respect to myelination is in oligodendrocyte metabolism and thus in an early stage of the assembly of the myelin membrane.  相似文献   

20.
Myelination is regulated by extracellular proteins, which control interactions between oligodendrocytes and axons. Semaphorins are repulsive axon guidance molecules, which control the migration of oligodendrocyte precursors during normal development and possibly in demyelinating diseases. We show here that the transmembrane semaphorin 6A (Sema6A) is highly expressed by myelinating oligodendrocytes in the postnatal mouse brain. In adult mice, Sema6A expression is upregulated in demyelinating lesions in cuprizone‐treated mice. The analysis of the optic nerve and anterior commissure of Sema6A‐deficient mice revealed a marked delay of oligodendrocyte differentiation. Accordingly, the development of the nodes of Ranvier is also transiently delayed. We also observed an arrest in the in vitro differentiation of purified oligodendrocytes lacking Sema6A, with a reduction of the expression level of Myelin Basic Protein. Their morphology is also abnormal, with less complex and ramified processes than wild‐type oligodendrocytes. In myelinating co‐cultures of dorsal root ganglion neurons and purified oligodendrocytes we found that myelination is perturbed in absence of Sema6A. These results suggest that Sema6A might have a role in myelination by controlling oligodendrocyte differentiation. © 2012 Wiley Periodicals, Inc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号