首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Electron transfer dissociation (ETD) is a recently introduced mass spectrometric technique that provides a more comprehensive coverage of peptide sequences and posttranslational modifications. Here, we evaluated the use of ETD for a global phosphoproteome analysis. In all, we identified a total of 1,435 phosphorylation sites from human embryonic kidney 293T cells, of which 1,141 ( approximately 80%) were not previously described. A detailed comparison of ETD and collision-induced dissociation (CID) modes showed that ETD identified 60% more phosphopeptides than CID, with an average of 40% more fragment ions that facilitated localization of phosphorylation sites. Although our data indicate that ETD is superior to CID for phosphorylation analysis, the two methods can be effectively combined in alternating ETD and CID modes for a more comprehensive analysis. Combining ETD and CID, from this single study, we were able to identify 80% of the known phosphorylation sites in >1,000 phosphorylated peptides analyzed. A hierarchical clustering of the identified phosphorylation sites allowed us to discover 15 phosphorylation motifs that have not been reported previously. Overall, ETD is an excellent method for localization of phosphorylation sites and should be an integral component of any strategy for comprehensive phosphorylation analysis.  相似文献   

2.
3.
A quantitative atlas of mitotic phosphorylation   总被引:4,自引:0,他引:4  
The eukaryotic cell division cycle is characterized by a sequence of orderly and highly regulated events resulting in the duplication and separation of all cellular material into two newly formed daughter cells. Protein phosphorylation by cyclin-dependent kinases (CDKs) drives this cycle. To gain further insight into how phosphorylation regulates the cell cycle, we sought to identify proteins whose phosphorylation is cell cycle regulated. Using stable isotope labeling along with a two-step strategy for phosphopeptide enrichment and high mass accuracy mass spectrometry, we examined protein phosphorylation in a human cell line arrested in the G1 and mitotic phases of the cell cycle. We report the identification of >14,000 different phosphorylation events, more than half of which, to our knowledge, have not been described in the literature, along with relative quantitative data for the majority of these sites. We observed >1,000 proteins with increased phosphorylation in mitosis including many known cell cycle regulators. The majority of sites on regulated phosphopeptides lie in [S/T]P motifs, the minimum required sequence for CDKs, suggesting that many of the proteins may be CDK substrates. Analysis of non-proline site-containing phosphopeptides identified two unique motifs that suggest there are at least two undiscovered mitotic kinases.  相似文献   

4.
5.
The reversible phosphorylation of tyrosine residues is an important mechanism for modulating biological processes such as cellular signaling, differentiation, and growth, and if deregulated, can result in various types of cancer. Therefore, an understanding of these dynamic cellular processes at the molecular level requires the ability to assess changes in the sites of tyrosine phosphorylation across numerous proteins simultaneously as well as over time. Here we describe a sensitive approach based on multidimensional liquid chromatography/mass spectrometry that enables the rapid identification of numerous sites of tyrosine phosphorylation on a number of different proteins from human whole cell lysates. We used this methodology to follow changes in tyrosine phosphorylation patterns that occur over time during either the activation of human T cells or the inhibition of the oncogenic BCR-ABL fusion product in chronic myelogenous leukemia cells in response to treatment with STI571 (Gleevec). Together, these experiments rapidly identified 64 unique sites of tyrosine phosphorylation on 32 different proteins. Half of these sites have been documented in the literature, validating the merits of our approach, whereas motif analysis suggests that a number of the undocumented sites are also potentially involved in biological pathways. This methodology should enable the rapid generation of new insights into signaling pathways as they occur in states of health and disease.  相似文献   

6.
β-Arrestin–mediated signaling downstream of seven transmembrane receptors (7TMRs) is a relatively new paradigm for signaling by these receptors. We examined changes in protein phosphorylation occurring when HEK293 cells expressing the angiotensin II type 1A receptor (AT1aR) were stimulated with the β-arrestin–biased ligand Sar1, Ile4, Ile8-angiotensin (SII), a ligand previously found to signal through β-arrestin–dependent, G protein-independent mechanisms. Using a phospho-antibody array containing 46 antibodies against signaling molecules, we found that phosphorylation of 35 proteins increased upon SII stimulation. These SII-mediated phosphorylation events were abrogated after depletion of β-arrestin 2 through siRNA-mediated knockdown. We also performed an MS-based quantitative phosphoproteome analysis after SII stimulation using a strategy of stable isotope labeling of amino acids in cell culture (SILAC). We identified 1,555 phosphoproteins (4,552 unique phosphopeptides), of which 171 proteins (222 phosphopeptides) showed increased phosphorylation, and 53 (66 phosphopeptides) showed decreased phosphorylation upon SII stimulation of the AT1aR. This study identified 38 protein kinases and three phosphatases whose phosphorylation status changed upon SII treatment. Using computational approaches, we performed system-based analyses examining the β-arrestin–mediated phosphoproteome including construction of a kinase-substrate network for β-arrestin–mediated AT1aR signaling. Our analysis demonstrates that β-arrestin–dependent signaling processes are more diverse than previously appreciated. Notably, our analysis identifies an AT1aR-mediated cytoskeletal reorganization network whereby β-arrestin regulates phosphorylation of several key proteins, including cofilin and slingshot. This study provides a system-based view of β-arrestin–mediated phosphorylation events downstream of a 7TMR and opens avenues for research in a rapidly evolving area of 7TMR signaling.  相似文献   

7.
The phosphotyrosine residues of receptor tyrosine kinases serve as unique binding sites for proteins involved in intracellular signaling, which contain SRC homology 2 (SH2) domains. Since overexpression or activation of the pp60c-src kinase has been reported in a number of human tumors, including primary human breast carcinomas, we examined the interactions of the SH2 and SH3 domains of human SRC with target proteins in human carcinoma cell lines. Glutathione S-transferase fusion proteins containing either the SH2, SH3, or the entire SH3/SH2 region of human SRC were used to affinity purify tyrosine-phosphorylated proteins from human breast carcinoma cell lines. We show here that in human breast carcinoma cell lines, the SRC SH2 domain binds to activated epidermal growth factor receptor (EGFR) and p185HER2/neu. SRC SH2 binding to EGFR was also observed in a nontumorigenic cell line after hormone stimulation. Endogenous pp60c-src was found to tightly associate with tyrosine-phosphorylated EGFR. Association of the SRC SH2 with the EGFR was blocked by tyrosyl phosphopeptides containing the sequences surrounding tyrosine-530, the regulatory site in the SRC C terminus, or sequences surrounding the major sites of autophosphorylation in the EGFR. These results raise the possibility that association of pp60c-src with these receptor tyrosine kinases is an integral part of the signaling events mediated by these receptors and may contribute to malignant transformation.  相似文献   

8.
9.
Differentiated cells can be forced to change identity, either to directly adopt another differentiated identity or to revert to a pluripotent state. Direct reprogramming events can also occur naturally. We recently characterized such an event in Caenorhabditis elegans, in which a rectal cell switches to a neuronal cell. Here we have used this single-cell paradigm to investigate the molecular requirements of direct cell-type conversion, with a focus on the early steps. Our genetic analyses revealed the requirement of sem-4/Sall, egl-27/Mta, and ceh-6/Oct, members of the NODE complex recently identified in embryonic stem (ES) cells, and of the OCT4 partner sox-2, for the initiation of this natural direct reprogramming event. These four factors have been shown to individually impact on ES cell pluripotency; however, whether they act together to control cellular potential during development remained an open question. We further found that, in addition to acting at the same time, these factors physically associate, suggesting that they could act together as a NODE-like complex during this in vivo process. Finally, we have elucidated the functional domains in EGL-27/MTA that mediate its reprogramming activity in this system and have found that modulation of the posterior HOX protein EGL-5 is a downstream event to allow the initiation of Y identity change. Our data reveal unique in vivo functions in a natural direct reprogramming event for these genes that impact on ES cells pluripotency and suggest that conserved nuclear events could be shared between different cell plasticity phenomena across phyla.  相似文献   

10.
Large-scale characterization of HeLa cell nuclear phosphoproteins   总被引:34,自引:0,他引:34  
Determining the site of a regulatory phosphorylation event is often essential for elucidating specific kinase-substrate relationships, providing a handle for understanding essential signaling pathways and ultimately allowing insights into numerous disease pathologies. Despite intense research efforts to elucidate mechanisms of protein phosphorylation regulation, efficient, large-scale identification and characterization of phosphorylation sites remains an unsolved problem. In this report we describe an application of existing technology for the isolation and identification of phosphorylation sites. By using a strategy based on strong cation exchange chromatography, phosphopeptides were enriched from the nuclear fraction of HeLa cell lysate. From 967 proteins, 2,002 phosphorylation sites were determined by tandem MS. This unprecedented large collection of sites permitted a detailed accounting of known and unknown kinase motifs and substrates.  相似文献   

11.
Quantitative mass spectrometry was used to identify hormone-dependent signaling pathways in renal medullary thick ascending limb (mTAL) cells via phosphoproteomic analysis. Active transport of NaCl across the mTAL epithelium is accelerated by hormones that increase cAMP levels (vasopressin, glucagon, parathyroid hormone, and calcitonin). mTAL suspensions from rat kidneys were exposed (15 min) to a mixture of these four hormones. Tryptic phosphopeptides (immobilized metal affinity chromatography-enriched) were identified and quantified by mass spectrometry (LTQ-Orbitrap) using label-free methodology. We quantified a total of 654 phosphopeptides, of which 414 were quantified in three experimental pairs (hormone vs. vehicle). Of these phosphopeptides, 82% were statistically unchanged in abundance in response to the hormone mixture. In contrast, 48 phosphopeptides were significantly increased, whereas 28 were significantly decreased. The population of up-regulated phosphopeptides was highly enriched in basophilic kinase substrate motifs (AGC or calmodulin-sensitive kinase families), whereas the down-regulated sites were dominated by “proline-directed” motifs (cyclin-dependent or MAP kinase families). Bioinformatic classification uncovered overrepresentation of transmembrane transporters, protein phosphatase regulators, and cytoskeletal binding proteins among the regulated proteins. Immunoblotting with phospho-specific antibodies confirmed cAMP/vasopressin-dependent phosphorylation at Thr96, Ser126, and Ser874 of the Na+:K+:2Cl cotransporter NKCC2, at Ser552 of the Na+:H+ exchanger NHE3, and at Ser552 of β-catenin. Vasopressin also increased phosphorylation of NKCC2 at both Ser126 (more than fivefold) and Ser874 (more than threefold) in rats in vivo. Both sites were phosphorylated by purified protein kinase A during in vitro assays. These results support the view that, although protein kinase A plays a central role in mTAL signaling, additional kinases, including those that target proline-directed motifs, may be involved.  相似文献   

12.
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.  相似文献   

13.
14.
15.
At present, genetically modified rats have not been generated from ES cells because stable ES cells and a suitable injection method are not available. To monitor the pluripotency of rat ES cells, we generated Oct4-Venus transgenic (Tg) rats via a conventional method, in which Venus is expressed by the Oct4 promoter/enhancer. This monitoring system enabled us to define a significant condition of culture to establish authentic rat ES cells based on a combination of 20% FBS and cell signaling inhibitors for Rho-associated kinase, mitogen-activated protein kinase, TGF-β, and glycogen synthase kinase-3. The rat ES cells expressed ES cell markers such as Oct4, Nanog, Sox2, and Rex1 and retained a normal karyotype. Embryoid bodies and teratomas were also produced from the rat ES cells. All six ES cell lines derived from three different rat strains successfully achieved germline transmission, which strongly depended on the presence of the inhibitors during the injection process. Most importantly, high-quality Tg rats possessing a correct transgene expression pattern were successfully generated via the selection of gene-manipulated ES cell clones through germline transmission. Our rat ES cells should be sufficiently able to receive gene targeting as well as Tg manipulation, thus providing valuable animal models for the study of human diseases.  相似文献   

16.
Protein GlcNAcylation serves as a nutrient/stress sensor to modulate the functions of many nuclear and cytoplasmic proteins. O-GlcNAc cycles on serine or threonine residues like phosphorylation, is nearly as abundant, and functions, at least partially, via its interplay with phosphorylation. Here, we describe changes in site-specific phosphorylation dynamics in response to globally elevated GlcNAcylation. By combining sequential phospho-residue enrichment, iTRAQ labeling, and high throughput mass spectrometric analyses, phosphorylation dynamics on 711 phosphopeptides were quantified. Based upon their insensitivity to phosphatase inhibition, we conclude that ≈48% of these phosphorylation sites were not actively cycling in the conditions of the study. However, increased GlcNAcylation influenced phosphate stoichiometry at most of the sites that did appear to be actively cycling. Elevated GlcNAcylation resulted in lower phosphorylation at 280 sites and caused increased phosphorylation at 148 sites. Thus, the cross-talk or interplay between these two abundant posttranslational modifications is extensive, and may arises both by steric competition for occupancy at the same or proximal sites and by each modification regulating the other's enzymatic machinery. The phosphoproteome dynamics presented by this large set of quantitative data not only delineates the complex interplay between phosphorylation and GlcNAcyation, but also provides insights for more focused investigations of specific roles of O-GlcNAc in regulating protein functions and signaling pathways.  相似文献   

17.
18.
Proteomic analysis of rabbit ventricular myocytes revealed a novel posttranslational modification to myosin light chain 1 (MLC1), consisting of phosphorylation at two sites. Subproteomic extraction to isolate myofilament-enriched fractions enabled determination of the extent of phosphorylation, which increased from 25.7+/-1.6% to 34.0+/-2.7% (mean+/-SE, n=4; P<0.05) after adenosine treatment at levels sufficient to pharmacologically precondition the myocytes (100 micromol/L). Mass spectrometry of MLC1 tryptic digests identified two peptide fragments modified by phosphorylation. These two phosphopeptides were characterized by peptide mass fingerprinting to determine the phosphorylation sites within rabbit ventricular MLC1, which correspond to Thr69 and Ser200 of rat MLC1, and to Thr64 and Ser194 or 195 of human MLC1. This proteomic analysis of preconditioned myocardium has revealed a previously unsuspected in vivo posttranslational modification to MLC1.  相似文献   

19.
Embryogenesis involves two distinct processes. On the one hand, cells must specialize, acquiring fates appropriate to their positions (differentiation); on the other hand, they must physically construct the embryo through coordinated mechanical activity (morphogenesis). In early vertebrate development, fibroblast growth factor (FGF) regulates multiple embryonic events, including germ layer differentiation and morphogenesis; the cellular components that direct FGF signaling to evoke these different responses remain largely unknown. We show here that the copper transporter 1 (Ctr1) protein is a critical router of FGF signals during early embryogenesis. Ctr1 both promotes the differentiation and inhibits the morphogenesis of mesoderm and neurectoderm in embryos of the frog Xenopus laevis, thereby coordinating normal development. Signal sorting by Ctr1 involves the activation of the Ras-MAP kinase cascade and appears to be independent of its role in copper transport. Mouse embryonic stem (ES) cells deficient for Ctr1 (Ctr1(-/-)) retain characteristics of pluripotency under conditions that favor differentiation in wild-type ES cells, indicating a conserved role for Ctr1 during amphibian and mammalian cell fate determination. Our studies support a model in which vertebrate Ctr1 functions as a key regulator of the differentiation capacity of both stem and progenitor cell populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号