首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of monovalent internal cations Cs+, Li+ and Na+ on potassium channel conductance in the frog node of Ranvier were studied by means of the voltage clamp. As previously reported, when 10–80% of the internal K+ was replaced by one of the above cations, the steady-state current-voltage relationship was significantly modified. The main effect was a voltage-dependent attenuation of the currents. We demonstrate that the current attenuation is associated with a change in the channel gating kinetics. For small depolarizations the kinetics can be described by the usual potassium conductance activation time constant, τ n . However, under certain experimental conditions (e.g. substitution of the intracellular K+ with 10% Cs+), during larger depolarizations, stepping the membrane potential to values above 40–60 mV, the conductance develops with two time constants: τ n and a new, slower time constant that, in contrast to τ n , grows with membrane potential. These results can be explained by assuming that the catins may occupy two different sites in the channel; when the first site is occupied the channel is blocked, while occupation of the second site results in slowing of the gating kinetics in the affected channels.  相似文献   

2.
Na+/K+ pump currents were measured in endothelial cells from human umbilical cord vein using the whole-cell or nystatin-perforated-patch-clamp technique combined with intracellular calcium concentration ([Ca2+]i) measurements with Fura-2/AM. Loading endothelial cells through the patch pipette with 40 mmol/l [Na+] did not induce significant changes of [Ca2+]i. Superfusing the cells with K+-free solutions also did not significantly affect [Ca2+]i. Reapplication of K+ after superfusion of the cells with K+-free solution induced an outward current at a holding potential of 0 mV. This current was nearly completely blocked by 100 mol/l dihydroouabain (DHO) and was therefore identified as a Na+/K+ pump current. During block and reactivation of the Na+/K+ pump no changes in [Ca2+]i could be observed. Pump currents were blocked concentration dependently by DHO. The concentration for half-maximal inhibition was 21 mol/l. This value is larger than that reported for other tissues and the block was practically irreversible. Insulin (10–1000 U/l) did not affect the pump currents. An increase of the intracellular Na+ concentration ([Na+]i) enhanced the amplitude of the pump current. Half-maximal activation of the pump current by [Na+]i occurred at about 60 mmol/l. The concentration for half-maximal activation by extracellular K+ was 2.4±1.2 mmol/l, and 0.4±0.1 and 8.7±0.7 mmol/l for Tl+ and NH4 + respectively. The voltage dependence of the DHO-sensitive current was obtained by applying linear voltage ramps. Its reversal potential was more negative than –150 mV. Pump currents measured with the conventional whole-cell technique were about four times smaller than pump currents recorded with the nystatin-perforated-patch method. If however 100 mol/l guanosine 5-O-(3-thiotriphosphate) (GTPS) were added to the pipette solution, the currents measured in the ruptured-whole-cell-mode were not significantly different from the currents measured with the perforated-patch technique. We suppose that the use of the perforated-patch technique prevents wash out of a guanine nucleotide-binding protein (G-protein)-connected intracellular regulator that is necessary for pump activation.  相似文献   

3.
The ionic selectivity of the hyperpolarizationactivated inward current (i f) channel to monovalent cations was investigated in single isolated sinoatrial node cells of the rabbit using the whole-cell patch-clamp technique. With a 140 mM K+ pipette, replacement of 90% external Na+ by Li+ caused a –24.5 mV shift of the fully activated current/voltage I/V curve without a significant decrease of the slope conductance. With a 140 mM Cs+ pipette, the i f current decreased almost proportionally to the decrease in external [Na+]o as Li+ was substituted. These responses are practically the same as those observed with N-methyl glucamine (NMG+) substitution, suggesting that the relative permeability of Li+ compared with Na+ for the i f channel is as low as that of NMG+. When Cs+ or Rb+ was substituted for internal K+, the fully activated I/V relationship for i f showed strong inward rectification with a positive reversal potential, indicating low permeability of the i f channel for Cs+ and Rb+. These results show that the i f channel is highly selective for Na+ and K+ and will not pass the similar ions Li+ and Rb+. Such a high degree of selectivity is unique and may imply that the structure of the i f channel differs greatly from that of other Na+ and K+ conducting channels.  相似文献   

4.
Numerous studies have demonstrated heightened Na+/Li+ countertransport (NLCT) activity in erythrocytes of patients with essential hypertension or diabetic nephropathy. The same carrier also contributes to the therapeutic action of lithium salt, widely used in the treatment of psychiatric disorders. However, the molecular origin of NLCT remains unknown. This study examined the role of major ion transporters in NLCT by comparative analysis of its activity and that of ion transporters providing inwardly directed 86Rb, 22Na and 32P fluxes. NLCT was below the detection limit in rat erythrocytes and ∼50-fold higher in rabbits compared to humans. Unlike NLCT, the activities of Na+,K+-ATPase, Na+,K+,2Cl cotransporter and anion exchanger were somewhat similar in the erythrocytes of these species, whereas Na+,Pi cotransport was in 1:2:6 proportion in rats, humans and rabbits, respectively. Loading of erythrocytes with Li+ for NLCT measurement did not affect the activity of Na+,Pi cotransporter. Keeping in mind that NLCT is much higher in rabbits vs humans and rats, we compared the set of membrane proteins in these species using 2-dimensional gel electrophoresis. This approach revealed 174 common spots, whereas 132 proteins were detected only in human and rabbit erythrocyte membranes. Among these proteins, we found 17 spots whose expression was higher by more than 5-fold in rabbit compared to human erythrocytes. Thus, our results argue against the involvement of major ion transporters in NLCT. They also show that comparative proteomics is a potent tool to identify the molecular origin of this carrier.  相似文献   

5.
A series of quaternary amonium (QA) ions were used to probe the gross architecture of the ion conduction pathway in a Ca2+-activated K+ channel from rat muscle membrane. The channels were inserted into planar phospholipid membranes and the single channel currents were measured in the presence of the different QA ions. Internally applied monovalent QA ions (e.g. tetramethylammonium and analogues) induced a voltage-dependent blockade with a unique effective valence of the block equal to 0.30, and blocking potency increases as the compound is made more hydrophobic. Blockade is relieved by increasing the K+ concentration of the internal or external side of the channel. The effective valence of block is independent of K+ concentration. These results suggest that, from the internal side, all monovalent QA ions interact with a site located in the channel conduction system. Divalent QA ions of the type n-alkylbis-,-trimethylammonium (bisQn) applied internally also block the channel in a voltage dependent fashion. For short chains (bisQ2-bisQ5), the effective valence decreases with chain length from 0.41 to 0.27, it remains constant for bisQ5 to bisQ6 and increases up to 0.54 for bisQ10. This dependence of block with chain length implies that 27% of the voltage drop within the channel occurs over a distance of 1 nm. Externally applied monovalent QA ions also block the channel. The site is specific for tetraethylammonium; increasing or decreasing the side chains in one methylene group decrease potency by about 400-fold. It is concluded that the Ca2+-activated K+ channel has wide mouths located at each end and that they are different in molecular nature.  相似文献   

6.
Morphological studies have demonstrated that a chronic increase in distal Na+ delivery causes hypertrophy of the distal convoluted tubule (DCT). To examine whether high NaCl-intake also causes functional changes in the well defined DCT, we measured transmural voltage (V T), lumen-to-bath Na+ flux (J Na(LB)), and net K+ secretion (J K(net)) in DCTs obtained from control rabbits and those on high NaCl-intake diets. The lumen negativeV T was significantly greater in the high NaCl group than in the control group. The net K+ secretion (pmol mm–1 min–1) was greater in the high NaCl-intake group (54.1±13.0 vs 14.7±5.6). The K+ permeabïlities in both luminal and basolateral DCT membranes, as assessed by the K+-induced transepithelial voltage deflection inhibitable with Ba2+, were increased in the experimental group. The lumen-to-bath22Na flux (pmol mm–1 min–1) was also greater in the experimental group (726±119 vs 396±65). TheV T component inhibitable with amiloride was also elevated in the high NaCl-intake group. Furthermore, Na+–K+-ATPase activity of the DCT was higher in the experimental than in the control group. We conclude that high NaCl intake increases both Na+ reabsorption and K+ secretion by the DCT. This phenomenon is associated with an increased Na+–K+-ATPase activity along with increased Na+ and K+ permeabilities of the luminal membrane, and an increase in the K+ permeability of the basolateral membrane. Cellular mechanisms underlying these functional changes remain to be established.  相似文献   

7.
Isolated skin of the clawed frogXenopus laevis was mounted in an Ussing-chamber. The transcellular sodiumcurrent (I Na) was identified either as amiloride-blockable (10–3 mol/l) short-circuit current (I SC), or by correctingI SC for the shunt-current obtained with mucosal Tris. A dose of 10 mmol/l Cd2+ applied to the mucosal side increased the current by about 70%. The half-maximal effect was reached at a Cd2+-concentration of 2,6 mmol/l (in NaCl-Ringer). The quick and fully reversible effect of Cd2+ could not be seen when 10–3 mol/l amiloride was placed in the outer, Na+-containing solution, nor when Na+ was replaced by Tris. This suggests that Cd2+ stimulatesI Na. Cd2+ intefered with the Na+-current self-inhibition, and therefore with the saturation ofI Na by increasing the apparent Michaelis constant (K Na) of this process. The I Na recline after stepping up mucosal [Na+] was much reduced in presence of Cd2+. Ca2+-ions on the mucosal side had an identical effect to Cd2+, and 10 mmol/l Ca2+ increaseI Na by about 100%. The half-maximal effect was obtained with 4.4 mmol/l Ca2+. The mechanism ofI Na-stimulation by Ca2+ did not seem to differ from that of Cd2+. Thus, although of low Na+-transport capacity,Xenopus skin appears to be as good a model for Na+-transporting epithelia asRanidae skin, with the exception of the calcium effect which, so far, has not been reported forRanidae.  相似文献   

8.
An increased extracellular K+ concentration ([K+]0) is thought to cause muscle fatigue. We studied the effects of increasing [K+]0 from 4 mM to 8–14 mM on tetanic contractions in isolated bundles of fibres and whole soleus muscles from the rat. Whereas there was little depression of force at a [K+]0 of 8–9 mM, a further small increase in [K+]0 to 11–14 mM resulted in a large reduction of force. Tetanus depression at 11 mM [K+]o was increased when using weaker stimulation pulses and decreased with stronger pulses. Whereas the tetanic force/resting membrane potential (E M) relation showed only moderate force depression with depolarization from –74 to –62 mV, a large reduction of force occurred whenE M fell to –53 mV. The implications of these relations to fatigue are discussed. Partial inhibition of the Na+-K+ pump with ouabain (10–6 M) caused additional force loss at 11 mM [K+]0. Salbutamol, insulin, or calcitonin gene-related peptide all stimulated the Na+-K+ pump in muscles exposed to 11 mM [K+ 0] and induced an average 26–33% recovery of tetanic force. When using stimulation pulses of 0.1 ms, instead of the standard 1.0-ms pulses, force recovery with these agents was 41–44% which was significantly greater (P < 0.025). Only salbutamol caused any recovery ofE M (1.3 mV). The observations suggest that the increased Na+ concentration difference across the sarcolemma, following Na+-K+ pump stimulation, has an important role in restoring excitability and force.  相似文献   

9.
Kinetic properties of the Na+-H+ antiport in the acinar cells of the isolated, superfused mouse lacrimal gland were studied by measuring intracellular pH (pHi) and Na+ activity (aNai) with the aid of double-barreled H+- and Na+-selective microelectrodes, respectively. Bicarbonate-free solutions were used throughout. Under untreated control conditions, pHi was 7.12±0.01 and aNai was 6.7±0.6 mmol/l. The cells were acid-loaded by exposure to an NH 4 + solution followed by an Na+-free N-methyl-d-glucamine (NMDG+) solution. Intracellular Na+ and H+ concentrations were manipulated by changing the duration of exposure to the above solutions. Subsequent addition of the standard Na+ solution rapidly increased pHi. This Na+-induced increase in pHi was almost completely inhibited by 0.5 mmol/l amiloride and was associated with a rapid, amiloride-sensitive increase in aNai. The rate of pHi recovery induced by the standard Na+ solution increased in a saturable manner as pHi decreased, and was negligible at pHi 7.2–7.3, indicating an inactivation of the Na+-H+ antiport. The apparent K m for intracellular H+ concentration was 105 nmol/l (pH 6.98). The rate of acid extrusion from the acid-loaded cells increased proportionally to the increase in extracellular pH. Depletion of aNai to less than 1 mmol/l by prolonged exposure to NMDG+ solution significantly increased the rate of Na+-dependent acid extrusion. The rate of acid extrusion increased as the extracellular Na+ concentration increased following Michaelis-Menten kinetics (V max was 0.55 pH/min and the apparent K m was 75 mmol/l at pHi 6.88). The results clearly showed that the Na+-H+ antiport activity is dependent on the chemical potential gradient of both Na+ and H+ ions across the basolateral membrane, and that the antiporter is asymmetric with respect to the substrate affinity of the transport site. The data agree with the current model of activation and inactivation of the antiporter by an intracellular site through changes in the intracellular Na+ and H+ concentrations.  相似文献   

10.
《Virology》2009,384(1):1-302
Epidemics of tick-borne encephalitis involving thousands of humans occur annually in the forested regions of Europe and Asia. Despite the importance of this disease, the underlying basis for the development of encephalitis remains undefined. Here, we prove the key role of CD8+ T-cells in the immunopathology of tick-borne encephalitis, as demonstrated by prolonged survival of SCID or CD8−/− mice, following infection, when compared with immunocompetent mice or mice with adoptively transferred CD8+ T-cells. The results imply that tick-borne encephalitis is an immunopathological disease and that the inflammatory reaction significantly contributes to the fatal outcome of the infection.  相似文献   

11.
CD4(+)CD25(+) regulatory T (Treg) cells play an essential role in the induction and maintenance of peripheral self-tolerance. Indirubin, a traditional Chinese medicine, was clinically used in the treatment of chronic myelocytic leukemia as well as some autoimmune diseases, including Alzheimer's disease, diabetes, and so on. The effects of indirubin on CD4(+)CD25(+)Treg cells, which play a critical role in controlling autoimmunity, have not been addressed. In the present study, we observed the cell levels, phenotypes, and immunoregulatory function of CD4(+)CD25(+)Treg cells in indirubin-treated mice. Treatment with indirubin significantly enhanced the ratios of CD4(+)CD25(+)Treg cells or CD4(+)CD25(+)Foxp3(+)Treg cells to CD4(+)T cells in peripheral blood, lymph nodes, and spleens (P < 0.01 compared with control mice). CD4(+)CD25(+)Foxp3(+)Treg cells to CD4 single positive cells in the thymi of indirubin-treated mice were significantly higher than those in control mice. Furthermore, splenic CD4(+)CD25(+)Treg cells in indirubin-treated mice showed immunosuppressive ability on the immune response of T effector cells to alloantigens or mitogen as efficiently as the control CD4(+)CD25(+)Treg cells in vitro. The present studies indicate that CD4(+)CD25(+)Treg cells are more resistant to indirubin than effector T cells in vivo. The selectively enhanced CD4(+)CD25(+)Treg cell levels by indirubin made host to be more favorable for immune tolerance induction, which opened one possibility for indirubin to treat autoimmune diseases.  相似文献   

12.
Small (<25 μm in diameter) neurons of the dorsal root ganglion (DRG) express multiple voltage-gated Na+ channel subtypes, two of which being resistant to tetrodotoxin (TTX). Each subtype mediates Na+ current with distinct kinetic property. However, it is not known how each type of Na+ channel contributes to the generation of action potentials in small DRG neurons. Therefore, we investigated the correlation between Na+ currents in voltage-clamp recordings and corresponding action potentials in current-clamp recordings, using wild-type (WT) and NaV1.8 knock-out (KO) mice, to clarify the action potential electrogenesis in small DRG neurons. We classified Na+ currents in small DRG neurons into three categories on the basis of TTX sensitivity and kinetic properties, i.e., TTX-sensitive (TTX-S)/fast Na+ current, TTX-resistant (TTX-R)/slow Na+ current, and TTX-R/persistent Na+ current. Our concurrent voltage- and current-clamp recordings from the same neuron revealed that the action potentials in WT small DRG neurons were mainly dependent on TTX-R/slow Na+ current mediated by NaV1.8. It was surprising that a large portion of TTX-S/fast Na+ current was switched off in WT small DRG neurons due to a hyperpolarizing shift of the steady-state inactivation (h ), whereas in KO small DRG neurons which are devoid of TTX-R/slow Na+ current, the action potentials were generated by TTX-S/fast Na+ current possibly through a compensatory shift of h in the positive direction. We also confirmed that TTX-R/persistent Na+ current mediated by NaV1.9 actually regulates subthreshold excitability in small DRG neurons. In addition, we demon strated that TTX-R/persistent Na+ current can carry an action potential when the amplitude of this current was abnormally increased. Thus, our results indicate that the action potentials in small DRG neurons are generated and regulated with a combination of multiple mechanisms that may give rise to unique functional properties of small DRG neurons.  相似文献   

13.
The aim of this study was to quantify and evaluate the forkhead box P3 (FoxP3) expression regulatory T cells in new-onset systemic lupus erythematosus (SLE) patients before and after treatment. Forty-four newly diagnosed and untreated SLE patients, including 24 with active disease (SLEDAI > or = 10) and 20 with inactive disease (SLEDAI < 5), were enrolled in this study. Twenty-one age- and sex-matched healthy volunteers were also included as controls. Peripheral blood samples were collected and mononuclear cells isolated. The expression of CD25 and FoxP3 in CD4(+) T cells were analysed with flow cytometry. CD4(+)CD25(+) (3.95-13.04%) and CD4(+)CD25(high) (0.04-1.34%) T cells in peripheral blood in untreated patients with new-onset active lupus were significantly lower than that in the patients with inactive lupus (7.27-24.48%, P < 0.05 and 0.14-3.07% P < 0.01 respectively) and that in healthy controls (5.84-14.84%, P < 0.05). Interestingly, the decrease in CD4(+)CD25(high) T cells was restored significantly in patients with active lupus after corticosteroid treatment. There was, however, a significantly higher percentage of CD4(+)FoxP3(+) T cells in patients with active (5.30-23.00%) and inactive (7.46-17.38%) new-onset lupus patients compared with healthy control subjects (2.51-12.94%) (P < 0.01). Intriguingly, CD25 expression in CD4(+)FoxP3(+) T cells in patients with active lupus (25.24-62.47%) was significantly lower than that in those patients with inactive lupus (30.35-75.25%, P < 0.05) and healthy controls (54.83-86.38%, P < 0.01). Most strikingly, the levels of FoxP3 expression determined by mean fluorescence intensity in CD4(+)CD25(high) cells in patients with active SLE were significantly down-regulated compared with healthy subjects (130 +/- 22 versus 162 +/- 21, P = 0.012). CD4(+)CD25(high) T cells are low in new-onset patients with active SLE and restored after treatment. Despite that the percentage of CD4(+)FoxP3(+) T cells appear high, the levels of FoxP3 expression in CD4(+)CD25(high) T cells are down-regulated in untreated lupus patients. There is a disproportional expression between CD25(high) and FoxP3(+) in new-onset patients with active SLE.  相似文献   

14.
Summary We have recently shown that LiCl in the culture medium retards cleavage of mouse preimplantation embryos without delaying their blastulation and causes the formation of blastocysts with few large cells and a reduced or absent inner cell mass (Izquierdo and Becker 1982). In this study we compare the ultrastructure of major cellular organelles of Li+-treated and control embryos. No subcellular alterations were found that correlate with the altered morphology of the blastocysts. On the basis of these results we submit that the malformation of blastocysts developed in a Li+-containing medium is the morphogenetic consequence of a retardation of cleavage coupled with a normal timing in the establishment of zonular tight junctions around the peripheral cells of the morula.This research was partially financed by Grants from PLAMIRH and the Ford Foundation  相似文献   

15.
16.
A new method is described to prepare theta-microelectrodes with tips up to 0.15 m diameter controlled under scanning electron microscope. K+- and Na+-sensitive resins were tested.Method features are the following: i) hard drying of the glass, ii) rehydration of one channel and weak wetting of the other with a three-methylchlorosilane solution before pulling, iii) simultaneous presence of water and silane in the two channels during pulling, iv) gradual silanization from the tip to the shank.Selective and conventional channels did not affect each other and no displacements of resins were observed. The change of potential difference of the selective channel was more than –50 mV/decade. Apical membrane potentials and cell Na+ and K+ activities of the epithelial cells of rabbit gall-bladder (cell diameter: 5–10 m) were measured with these theta-microelectrodes and with single-barrel microelectrodes of similar tip size: results obtained were not significantly different.  相似文献   

17.
18.
Summary The incidence of diabetic nephropathy in patients with insulin-dependent diabetes mellitus (IDDM) may depend on factors other than the quality of diabetes control. Hypertension is an additional factor associated with a high degree of renal involvement in IDDM. One abnormality consistantly observed in various tissues of patients with essential hypertension is enhanced activity of the Na+/H+ antiport. In the present study we have therefore studied platelet antiport activity in 41 healthy subjects (control), in 22 patients with untreated essential hypertension (EH), and in 35 normotensive IDDM patients (type 1). Of these patients 17 exhibited signs of diabetic nephropathy (group 1) while 18 had no evidence for renal involvement of IDDM in spite of a duration of IDDM of at least 10 years (group 2). The two IDDM patient groups were undistinguishable with respect to age, body mass index, and arterial blood pressure (group 1, 117.9±2.4/78.4±1.5 mmHg; group 2, 113.9±3.6/76.1±1.8 mmHg). Antiporter activity was determined from the rate of cell volume changes induced by propionic acid. Platelet Na+/H+ exchange activity averaged 23.43±0.43 10–3·s–1 in control subjects and was markedly elevated in EH (28.38±0.62 10–3·s–1 P<0.01). Antiport activity in group 2 patients without nephropathy averaged 24.54±0.57 10–3·s–1 and was undistinguishable from the control group. However, platelet Na+/H+ antiport activity was significantly stimulated in group 1 patients with nephropathy as compared to group 2(26.95±0.73 10–3. s–1 ; P<0.025). Our results show that renal involvement in IDDM is associated with enhanced activity of the platelet Na+/H+ antiport.Abbreviations EH essential hypertension - HbA1c glycosyla-ted hemoglobin - IDDM insulin-dependent diabetes mellitus Dedicated to Prof. Dr. N. Zöllner on the occasion of his 70th birthday  相似文献   

19.
Microelectrodes were used to measure membrane potential and intracellular potassium activity in surface epithelial cells (SEC) of frog (Rana esculenta) fundic gastric mucosa in vitro. Separate measurements were carried out by applying fine-tipped, single barrelled, KCl filled non-selective electrodes and liquid K+-selective electrodes. Membrane potentials with respect to the mucosal and serosal surfaces, measured with non-selective electrodes, were –54.5±1.0 S.E. mV (n=59) and –73.0±1.1 S.E. mV (n=59) respectively. The electrical potential difference referred to the mucosal surface, when measured with K+-sensitive electrodes, was +21.2±0.8 S.E. mV (n=35), and intracellular K+ activity was 98.5 mmol/l. Assuming that intracellular and extracellular K+ activity coefficients are equal (K=K), the K+ concentration is 135.0 mmol/l. The K+ equilibrium potential,E K, was calculated as –90.0 mV i.e. more negative than both membrane potentials. This result indicates active potassium accumulation in the SEC and provides direct evidence of the presence of an active K+ pump in either both or in only one of the cell membranes.  相似文献   

20.
We studied the effects of Na+ influx on large-conductance Ca2+-activated K+ (BKCa) channels in cultured human umbilical vein endothelial cells (HUVECs) by means of patch clamp and SBFI microfluorescence measurements. In current-clamped HUVECs, extracellular Na+ replacement by NMDG+ or mannitol hyperpolarized cells. In voltage-clamped HUVECs, changing membrane potential from 0 mV to negative potentials increased intracellular Na+ concentration ([Na+]i) and vice versa. In addition, extracellular Na+ depletion decreased [Na+]i. In voltage-clamped cells, BKCa currents were markedly increased by extracellular Na+ depletion. In inside-out patches, increasing [Na+]i from 0 to 20 or 40 mM reduced single channel conductance but not open probability (NPo) of BKCa channels and decreasing intracellular K+ concentration ([K+]i) gradually from 140 to 70 mM reduced both single channel conductance and NPo. Furthermore, increasing [Na+]i gradually from 0 to 70 mM, by replacing K+, markedly reduced single channel conductance and NPo. The Na+–Ca2+ exchange blocker Ni2+ or KB-R7943 decreased [Na+]i and increased BKCa currents simultaneously, and the Na+ ionophore monensin completely inhibited BKCa currents. BKCa currents were significantly augmented by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM and significantly reduced by decreasing [K+]o from 12 or 6 to 0 mM or applying the Na+–K+ pump inhibitor ouabain. These results suggest that intracellular Na+ inhibit single channel conductance of BKCa channels and that intracellular K+ increases single channel conductance and NPo. GH Liang and MY Kim contributed equally to this publication and therefore share the first authorship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号