首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoglycosides have previously been shown to suppress nonsense mutations, allowing translation of full-length proteins in vitro and in animal models. In the mdx mouse, where muscular dystrophy is due to a nonsense mutation in the dystrophin gene, gentamicin suppressed truncation of the protein and ameliorated the phenotype. A subset of patients with Duchenne and Becker muscular dystrophy similarly possess a nonsense mutation, causing premature termination of dystrophin translation. Four such patients, with various stop codon sequences, were treated once daily with intravenous gentamicin at 7.5 mg/kg/day for 2 weeks. No ototoxicity or nephrotoxicity was detected. Full-length dystrophin was not detected in pre- and post-treatment muscle biopsies.  相似文献   

2.
Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by mutations of diverse genes related to normal muscle function. Although there is no current effective treatment for these devastating diseases, various molecular strategies have been developed to restore the expressions of the associated defective proteins. In preclinical animal models, both viral and nonviral vectors have been shown to deliver recombinant versions of defective genes. Antisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic acid to produce an internally deleted but partially functional dystrophin in an experimental model of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, several experimental clinical trials are underway that aim to demonstrate efficacy in treating these devastating diseases.  相似文献   

3.
We report the translational readthrough levels induced by the aminoglycosides gentamicin, amikacin, tobramycin, and paromomycin for eight premature stop codon mutations identified in Duchenne's and Becker's muscular dystrophy patients. In a transient transfection reporter assay, aminoglycoside treatment results show that one stop codon mutation is suppressed significantly better (up to 10% stop codon readthrough) than the others; five show lower but statistically significant suppression (< 2% stop codon readthrough); and two appear refractory to aminoglycoside treatment. Readthrough levels do not substantially vary between different sources of gentamicin, and, for this set of mutations, the efficiency of termination at the premature stop codon mutation does not appear to correlate with disease severity.  相似文献   

4.
5.
Duchenne muscular dystrophy is the most severe childhood form of muscular dystrophy caused by mutations in the gene responsible for dystrophin production. There is no cure, and treatment is limited to glucocorticoids that prolong ambulation and drugs to treat the cardiomyopathy. Multiple treatment strategies are under investigation and have shown promise for Duchenne muscular dystrophy. Use of molecular-based therapies that replace or correct the missing or nonfunctional dystrophin protein has gained momentum. These strategies include gene replacement with adeno-associated virus, exon skipping with antisense oligonucleotides, and mutation suppression with compounds that “read through” stop codon mutations. Other strategies include cell therapy and surrogate gene products to compensate for the loss of dystrophin. All of these approaches are discussed in this review, with particular emphasis on the most recent advances made in each therapeutic discipline. The advantages of each approach and challenges in translation are outlined in detail. Individually or in combination, all of these therapeutic strategies hold great promise for treatment of this devastating childhood disease.  相似文献   

6.
7.
Effective treatment for Duchenne muscular dystrophy (DMD) is currently unavailable. Readthrough of disease-causing premature termination codons might alleviate the symptoms of genetic diseases caused by nonsense mutations. Several ribosome-binding compounds, including selective antibiotics and synthetic novel small molecules, induce translational readthrough, restoring full-length functional proteins. Here in this innovative therapeutic strategy has been summarized with a focus on DMD. We have previously reported that negamycin restored dystrophin expression with less toxicity than gentamicin in mdx mice. To explore more potent readthrough inducers, we established the transgenic mouse called READ (readthrough evaluation and assessment by dural receptor) for readthrough-specific detection. Using READ mice, we discovered drug candidates, including sterically negamycin-like small molecules and aminoglycoside derivatives. The newly developed small molecules induced dose-dependent readthrough with greater potency than ataluren in vitro and promoted the expression of dystrophin and reduction in serum creatine kinase activity in mdx mice. Moreover, the aminoglycoside derivative restored both dystrophin protein and contractile function of mdx skeletal muscles with appreciably higher readthrough activity and lower toxicity than that of gentamicin. Furthermore, we confirmed the efficacy of a thioglycolate-based depilatory agent to enhance the topical delivery of skin-impermeable drugs, including aminoglycosides. These promising new chemotherapeutic agents with beneficial effects on readthrough action, lower toxicity, and transdermal delivery may have significant value in treating or preventing genetic diseases caused by nonsense mutations.  相似文献   

8.
Aminoglycoside antibiotics have been found to suppress nonsense mutations located in the defective dystophin gene in mdx mice, suggesting a possible treatment for Duchenne muscular dystrophy (DMD). However, it is very difficult to find patients that are applicable for this therapy, because: (1) only 5-13% of DMD patients have nonsense mutations in the dystrophin gene, (2) it is challenging to find nonsense mutations in the gene because dystrophin cDNA is very long (14 kb), and (3) the efficiency of aminoglycoside-induced read-through is dependent on the kind of nonsense mutation. In order to develop a system for identifying candidates that qualify for aminoglycoside therapy, fibroblasts from nine DMD patients with nonsense mutation of dystrophin gene were isolated, induced to differentiate to myogenic lineage by AdMyoD, and exposed with gentamicin. The dystrophin expression in gentamicin-exposed myotubes was monitored by in vitro dystrophin staining and western blotting analysis. The results showed that gentamicin was able to induce dystrophin expression in the differentiated myotubes by the read-through of the nonsense mutation TGA in the gene; a read-through of the nonsense mutations TAA and TAG did not occur and consequently did not lead to dystrophin expression. Therefore, it is speculated that the aminoglycoside treatment is far more effective for DMD patients that have nonsense mutation TGA than for patients that have nonsense mutation TAA and TAG. In this study, we introduce an easy system to identify patients for this therapy and report for the first time, that dystrophin expression was detected in myotubes of DMD patients using gentamicin.  相似文献   

9.
10.
In this paper I review the results of the treatments directed to modify the mRNA of dystrophin with the goal of converting the severe Duchenne type to the milder Becker muscular dystrophy. Antisense oligomers potential to modify Duchenne muscular dystrophy (DMD) gene expression and therapeutic strategies to induce ribosomal read-through of nonsense mutations (PTC124) are described. They are an important advance in the treatment of DMD, so far unspecific. Significant expression of new dystrophin is observed in biopsies of peripheral muscle, although the functional improvement is not so encouraging. New modification of chemistries are expected to improve the liberation, broad distribution in muscles, as well as their efficacy and safety enough to allow a positive chronic treatment of DMD.  相似文献   

11.
Gentamicin, an aminoglycoside antibiotic which causes read-through of premature termination codon during translation, has been used to rescue genetic diseases caused by nonsense mutation. Its strong side effects, however, has always threaten patients. In order to utilize other antibiotics with less side effects than gentamicin, we have shown that negamycin, a dipeptide antibiotic with read-through activity in prokaryotes, restored dystrophin in skeletal and cardiac muscles of mdx mouse, an animal model for Duchenne type muscular dystrophy caused by nonsense mutation. To avoid miscoding and emerging resistant bacteria for these read-through antibiotics, further drug design and high throughput screening of gentamicin- or negamycin-related molecules will be needed.  相似文献   

12.
13.
We identified a premature chain termination mutation in two brothers with Duchenne muscular dystrophy and correlated the mutation in one of the brothers with immunologic detection of dystrophin in skeletal muscle. Southern and polymerase chain reaction (PCR) studies of genomic DNA from the affected boys showed no major gene rearrangements. However, the noted absence of a HindIII Southern fragment containing the proximal portion of exon 48 led to the identification of a point mutation that creates a new HindIII restriction site in that exon. Exon 48 was amplified by PCR from DNA of the patients and other family members and digested with HindIII to show the mutation in the two boys and also in their mother and maternal grandmother. Direct DNA sequencing demonstrated a cytosine-to-thymine transition at nucleotide 7163 of dystrophin that converts a glutamine codon (CAA) to an ochre chain termination codon (UAA). This mutation predicts a truncated dystrophin missing the distal spectrin-like repeat region, the cysteine-rich domain, and the carboxy terminal. Immunohistochemistry of skeletal muscle from one of the affected boys revealed membrane-localized dystrophin in the majority of fibers detected by anti-dystrophin antibodies against (1) the amino terminal and (2) part of the spectrin-like repeat region; both regions would be present in the truncated dystrophin predicted by the chain termination mutation. This suggests that the carboxy terminal may not be an absolute requirement for dystrophin membrane localization. Very few muscle fibers also showed peripheral immunostaining using anti-dystrophin antibodies against the carboxy terminal, suggesting gene reversion, suppression, or read-through in these rare fibers.  相似文献   

14.
15.
16.
17.
Approximately 30% of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene and it is difficult to identify single nucleotide variations in genomic DNA using current diagnostic techniques. This represents a great obstacle in genetic analysis of these patients and genetic counselling of their families. In this work we performed denaturing gradient gel electrophoresis analysis to search for Duchenne muscular dystrophy mutations. We screened the whole dystrophin gene in 20 Brazilian Duchenne muscular dystrophy patients without a detectable deletion or duplication, and their mothers. The disease causing mutations, all of which have not been described before, were identified, and we could determine the carrier status of the mothers in all analyzed families. We concluded that denaturing gradient gel electrophoresis is very efficient in identifying small mutations and de novo mutations and in determining the carrier status of the mothers in these 30% of Duchenne muscular dystrophy patients. Denaturing gradient gel electrophoresis showed a high mutation detection rate (100%) for Duchenne muscular dystrophy and can be used as a current diagnostic procedure.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle weakness. It is caused by a variety of DMD gene pathogenic variations (large deletions or duplications, and small mutations) which leads to the absence or to a decreased amount of dystrophin protein. The allelic Becker muscular dystrophy is characterized by later onset and milder muscle involvement, and other rarer phenotypes might also be associated, such as dilated cardiomyopathy, cognitive impairment, and other neurological signs. Following the identification of the genetic cause and the disease pathophysiology, innovative personalized therapies emerged. These can be categorized into two main groups: (1) therapies aiming at the restoration of dystrophin at the sarcolemma; (2) therapeutics dealing with secondary consequences of dystrophin deficiency. In this review we provide an overview about DMD genotype-phenotype correlation, and on main approaches to restore dystrophin as stop codon read-through, exon skipping, vector-mediated gene therapy, and genome-editing strategies, some of these are based on approved orphan drugs. Finally, we present the clinical potential of novel strategies combining therapies to correct the genetic defect and other approaches, targeting secondary downstream pathological cascade due to dystrophin deficiency.  相似文献   

19.
The dystrophin-based membrane cytoskeleton of muscle fibers has emerged as a critical multiprotein complex which seems to impart structural integrity on the muscle fiber plasma membrane. Deficiency of dystrophin causes the most common types of muscular dystrophy, Duchenne and Becker muscular dystrophies. Muscular dystrophy patients showing normal dystrophin protein and gene analysis are generally isolated cases with a presumed autosomal recessive inheritance pattern (limb-girdle muscular dystrophy). Recently, linkage and candidate gene analyses have shown that some cases of limb-girdle muscular dystrophy can be caused by deficiency of other components of the dystrophin membrane cytoskeleton. The most recently identified component, δ-sarcoglycan deficiency occurred in other world populations, to identify the range of mutations and clinical phenotypes, and to test for the biochemical consequences of δ-sarcoglycan gene mutations, we studied Duchenne-like and limb-girdle muscular dystrophy patients who we had previously shown not to exhibit gene mutations of dystrophin, α-, β-, or γ-sarcoglycan for δ-sarcoglycan mutations (n = 54). We identified two American patients with novel nonsense mutations of δ-sarcoglycan (W30X, R165X). One was apparently homozygous, and we show likely consanguinity through homozygosity for 13 microsatellite loci covering a 38 cM region of chromosome 5. The second was heterozygous. Both were girls who showed clinical symptoms consistent with Duchenne muscular dystrophy in males. Our data shows that δ-sarcoglycan deficiency occurs in other world populations, and that most or all patients show a deficiency of the entire sarcoglycan complex, adding support to the hypothesis that these proteins function as a tetrameric unit. Received January 1, 1997; Revised and Accepted January 15, 1997  相似文献   

20.
Because it is due to a mutation on the X-chromosome, Duchenne muscular dystrophy rarely affects women, unless there is an unequal lyonisation of the X-chromosome containing the normal dystrophin gene. We report here the unique situation of a symptomatic Duchenne muscular dystrophy woman who was transplanted with myoblasts received from her asymptomatic monozygotic twin sister 20 years ago. Specific dynamometry was performed to possibly detect a long-term effect of this cell therapy. Long-term safety of myoblast transplantation was established by this exceptional case. However, long-term efficacy could not be definitively asserted for this patient, in spite of several clues suggesting beneficial effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号