首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Vascular endothelial growth factor C induces angiogenesis in vivo   总被引:27,自引:0,他引:27       下载免费PDF全文
Vascular endothelial growth factor C (VEGF-C) recently has been described to be a relatively specific growth factor for the lymphatic vascular system. Here we report that ectopic application of recombinant VEGF-C also has potent angiogenic effects in vivo. VEGF-C is sufficiently potent to stimulate neovascularization from limbal vessels in the mouse cornea. Similar to VEGF, the angiogenic response of corneas induced by VEGF-C is intensive, with a high density of new capillaries. However, the outgrowth of microvessels stimulated by VEGF-C was significantly longer than that induced by VEGF. In the developing embryo, VEGF-C was able to induce branch sprouts from the established blood vessels. VEGF-C also induced an elongated, spindle-like cell shape change and actin reorganization in both VEGF receptor (VEGFR)-2 and VEGFR-3-overexpressing endothelial cells, but not in VEGFR-1-expressing cells. Further, both VEGFR-2 and VEGFR-3 could mediate proliferative and chemotactic responses in endothelial cells on VEGF-C stimulation. Thus, VEGF-C may regulate physiological angiogenesis and participate in the development and progression of angiogenic diseases in addition to lymphangiogenesis.  相似文献   

2.
Molecular biology of the VEGF and the VEGF receptor family   总被引:29,自引:0,他引:29  
Vascular endothelial growth factor (VEGF) is the founding member of a still growing family of endothelial cell growth factors. The diverse functions of VEGF and its homologues (PIGF, VEGF-B, VEGF-C, VEGF-D, and VEGF-E) can be explained by their differential binding to the three signaling VEGF receptors. The VEGF family members PIGF and VEGF-B with exclusive binding capacities to the VEGFR-1 can influence monocyte activation and differentiation. The VEGFR-2 and VEGFR-3 binding VEGF homologues, VEGF-C and VEGF-D, are mitogens for both vascular and lymphatic endothelial cells. The orf virus encoded VEGF-E homologue binds and activates only the VEGFR-2 and thus may be the prototype of a vascular endothelial cell-specific growth factor. Further specific activities of VEGF and its homologues result from receptor-specific signaling and differential expression of ligands or receptors. A naturally occurring soluble form of the VEGFR-1 suggests a regulatory role for this receptor. Finally, the production and activation of factors involved in the coagulation/fibrinolytic system provide further evidence for the hypothesis that processes of hemostasis are involved in angiogenesis.  相似文献   

3.
Vascular endothelial growth factor receptor-3 (VEGFR-3) is a major mediator of lymphangiogenesis. Recently, VEGFR-3 ligands, VEGF-C, and VEGF-D were reported to promote tumor lymphangiogenesis and lymphatic metastasis, and these processes were inhibited by blocking of the VEGFR-3-signaling pathway. Here, we have adapted the mouse corneal angiogenesis assay to study potential lymphangiogenic factors and inhibitors. Immunohistochemical analysis with lymphatic endothelial markers showed that VEGF-C induces lymphatic as well as blood vessel growth in the cornea. By contrast, VEGF induced angiogenesis but not lymphangiogenesis. Fibroblast growth factor-2 (FGF-2) stimulated both lymphangiogenesis and angiogenesis. FGF-2 up-regulated VEGF-C expression in vascular endothelial and perivascular cells. Furthermore, administration of blocking anti-VEGFR-3 antibodies inhibited the FGF-2-induced lymphangiogenesis. These findings show that VEGFR-3 can mediate lymphangiogenesis induced by other growth factors. Because increased expression of FGF-2 and VEGF-C has been associated with lymphatic metastasis, our results provide a potential strategy for the inhibition of lymphatic metastasis in cancer therapy.  相似文献   

4.
OBJECTIVE: To investigate the expression of vascular endothelial growth factor (VEGF) and its vascular and lymphatic receptors in skin in systemic sclerosis (SSc) compared to systemic lupus erythematosus (SLE), Raynaud's phenomenon (RP) and normal healthy control skin. METHODS: Staining was performed using rabbit anti-human antibodies in DAKO TechMate Horizon staining robot programmed for the biotin-streptavidin protocol. RESULTS: VEGF was sporadically and weakly expressed in normal skin, but in spite of vascular damage in diseased skin, VEGF expression was only slightly upregulated. In contrast, its vascular receptors VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1), were clearly upregulated. Finally, the lymphatic VEGFR-3 (Flt-4) receptor was also upregulated in diseased skin and ectopically expressed also in blood vessels. Negative staining and positive sample controls confirmed the specificity of the staining. CONCLUSION: The imbalanced expression of VEGF and its vascular receptors suggest that the compensatory efforts to angiogenesis fail in SSc, in part due to insufficient local production of VEGF, which was low compared to VEGFR expression. This is compatible with the recent observations on the lack of alpha V beta 3+ newly formed blood vessels in SSc skin. Since microvascular angiogenic stimuli normally induce first VEGF and then VEGFR, these findings also suggest that the angiogenic cascade is turned on, but there is a defect in the finalization of its effects. Normalization of angiogenic cascade in SSc could provide a future therapeutic target.  相似文献   

5.
Vascular endothelial growth factor (VEGF) plays a major role in tumor angiogenesis. VEGF-C, however, is thought to stimulate the growth of lymphatic vessels because an expression of its specific receptor, VEGF receptor-3 (VEGFR-3), was demonstrated to be restricted to lymphatic vessels. Here we demonstrate that the inactivation of VEGFR-3 by a novel blocking monoclonal antibody (mAb) suppresses tumor growth by inhibiting the neo-angiogenesis of tumor-bearing tissues. Although VEGFR-3 is not expressed in adult blood vessels, it is induced in vascular endothelial cells of the tumor-bearing tissues. Hence, VEGFR-3 is another receptor tyrosine kinase involved in tumor-induced angiogenesis. Micro-hemorrhage in the tumor-bearing tissue was the most conspicuous histologic finding specific to AFL4 mAb-treated mice. Scanning microscopy demonstrated disruptions of the endothelial lining of the postcapillary venule, probably the cause of micro-hemorrhage and the subsequent collapse of the proximal vessels. These findings suggest the involvement of VEGFR-3 in maintaining the integrity of the endothelial lining during angiogenesis. Moreover, our results suggest that the VEGF-C/VEGFR-3 pathway may serve another candidate target for cancer therapy. (Blood. 2000;96:546-553)  相似文献   

6.
OBJECTIVE: To localize vascular endothelial growth factor C (VEGF-C) and VEGF-D in synovial specimens in relation to their VEGFR-2 and VEGFR-3 receptors in blood and lymphatic vessels. METHODS: Immunohistochemical staining and messenger RNA analysis from control and arthritic synovial membrane specimens. RESULTS: Quantitative RT-PCR disclosed that VEGF-C mRNA copy numbers were higher than VEGF-D mRNA copy numbers in the rheumatoid arthritis (RA), osteoarthritis, and control patient groups studied (p < 0.01). Immunohistochemical staining localized VEGF-C to synovial lining cell layer, pericytes, and smooth muscle cells of blood vessels. The number of VEGF-C positive cells was increased in the synovial lining of ankylosing spondylitis (AS) and RA compared to control synovium. However, in contrast to control synovial lining, little if any VEGF-D was detected in AS or RA synovial lining. VEGFR-2 expressing stromal blood vessels, also positive for the vascular endothelial marker PAL-E and the basement membrane marker laminin, were more abundant in RA and AS than in controls. Interestingly, the lymphatic endothelial receptor VEGFR-3 was also expressed in most synovial vessels, especially in the sublining capillaries and venules. CONCLUSION: VEGF-C is strongly expressed in the hypertrophic synovial lining of arthritic joints, whereas VEGF-D expression is very low in AS and RA. The expression of VEGF-C and VEGF-D in pericytes and smooth muscle cells suggests that these factors may have a role in maintaining vascular homeostasis. The VEGF receptors VEGFR-2 and VEGFR-3 are present in most of the sublining blood vessels. The expression of the lymphatic marker VEGFR-3 in the sublining blood vessels may relate to fluid filtration and/or fenestrations. The relatively few lymphatic vessels along with increased vascular permeability in RA may contribute to the development of tissue edema and joint stiffness.  相似文献   

7.
8.
Optimal angiogenic and lymphangiogenic gene therapy requires knowledge of the best growth factors for each purpose. We studied the therapeutic potential of human vascular endothelial growth factor (VEGF) family members VEGF-A, VEGF-B, VEGF-C, and VEGF-D as well as a VEGFR-3-specific mutant (VEGF-C156S) using adenoviral gene transfer in rabbit hindlimb skeletal muscle. The significance of proteolytic processing of VEGF-D was explored using adenoviruses encoding either full-length or mature (DeltaNDeltaC) VEGF-D. Adenoviruses expressing potent VEGFR-2 ligands, VEGF-A and VEGF-DDeltaNDeltaC, induced the strongest angiogenesis and vascular permeability effects as assessed by capillary vessel and perfusion measurements, modified Miles assay, and MRI. The most significant feature of angiogenesis induced by both VEGF-A and VEGF-DDeltaNDeltaC was a remarkable enlargement of microvessels with efficient recruitment of pericytes suggesting formation of arterioles or venules. VEGF-A also moderately increased capillary density and created glomeruloid bodies, clusters of tortuous vessels, whereas VEGF-DDeltaNDeltaC-induced angiogenesis was more diffuse. Vascular smooth muscle cell proliferation occurred in regions with increased plasma protein extravasation, indicating that arteriogenesis may be promoted by VEGF-A and VEGF-DDeltaNDeltaC. Full-length VEGF-C and VEGF-D induced predominantly and the selective VEGFR-3 ligand VEGF-C156S exclusively lymphangiogenesis. Unlike angiogenesis, lymphangiogenesis was not dependent on nitric oxide. The VEGFR-1 ligand VEGF-B did not promote either angiogenesis or lymphangiogenesis. Finally, we found a positive correlation between capillary size and vascular permeability. This study compares, for the first time, angiogenesis and lymphangiogenesis induced by gene transfer of different human VEGFs, and shows that VEGF-D is the most potent member when delivered via an adenoviral vector into skeletal muscle.  相似文献   

9.
The biology of vascular endothelial growth factors   总被引:30,自引:0,他引:30  
The discovery of the vascular endothelial growth factor (VEGF) family members VEGF, VEGF-B, placental growth factor (PlGF), VEGF-C and VEGF-D and their receptors VEGFR-1, -2 and -3 has provided tools for studying the vascular system in development as well as in diseases ranging from ischemic heart disease to cancer. VEGF has been established as the prime angiogenic molecule during development, adult physiology and pathology. PlGF may primarily mediate arteriogenesis, the formation of collateral arteries from preexisting arterioles, with potential future therapeutic use in for example occlusive atherosclerotic disease. VEGF-C and VEGF-D are primarily lymphangiogenic factors, but they can also induce angiogenesis in some conditions. While many studies have addressed the role of angiogenesis and the blood vasculature in human physiology, the lymphatic vascular system has until recently attracted very little attention. In this review, we will discuss recent advances in angiogenesis research and provide an overview of the molecular players involved in lymphangiogenesis.  相似文献   

10.
Critical lower limb ischemia is a common cause for amputation. To develop new therapeutic strategies, more information is needed about molecular mechanisms of tissue responses to ischemic stress and factors inducing angiogenesis. Using a DNA array of 8400 genes, gene expression patterns in human skeletal muscle samples collected from lower limbs amputated due to acute-on-chronic or chronic critical lower limb ischemia, were compared with the control samples collected from the same limb. The results were confirmed by RT-PCR and immunohistochemistry. In acute-on-chronic ischemia, 291 genes were significantly upregulated and 174 genes were downregulated (change in 5.5% of all genes) as compared to control samples. Significant induction of the hypoxia-inducible angiogenic pathway involving hypoxia-inducible factor-1alpha (HIF-1alpha), HIF-2alpha, vascular endothelial growth factor (VEGF) and its angiogenic receptor VEGFR-2, as well as tumor necrosis factor-alpha (TNF-alpha) with its downstream signaling machinery promoting inflammation and cell death, were found in acute-on-chronic ischemia. In chronic critical ischemia, gene expression changes were much less striking than in acute-on-chronic ischemia, with 74 genes significantly upregulated and 34 genes downregulated (change in 1.3% of all genes). In the chronic situation, the anabolic and survival factors, insulin-like growth factor-1 (IGF-1) and IGF-2, were upregulated in atrophic and regenerating myocytes together with attenuated HIF, VEGF, and VEGFR-2 expression in the same cells. In conclusion, acute-on-chronic and chronic human skeletal muscle ischemia result in distinct gene expression patterns. These findings may be of importance in the design of novel therapies, such as therapeutic vascular growth, for patients suffering from lower limb ischemia.  相似文献   

11.
Vascular endothelial growth factor (VEGF) binds both VEGF receptor-1 (VEGFR-1) and VEGF receptor-2 (VEGFR-2). Activation of VEGFR-2 is thought to play a major role in the regulation of endothelial function by VEGF. Recently, specific ligands for VEGFR-1 have been reported to have beneficial effects when used to treat ischemic diseases. However, the role of VEGFR-1 in angiogenesis is not fully understood. In this study, we showed that VEGFR-1 performs "fine tuning" of VEGF signaling to induce neovascularization. We examined the effects of retroviral vectors expressing a small interference RNA that targeted either the VEGFR-1 gene or the VEGFR-2 gene. Deletion of either VEGFR-1 or VEGFR-2 reduced the ability of endothelial cells to form capillaries. Deletion of VEGFR-1 markedly reduced endothelial cell proliferation and induced premature senescence of endothelial cells. In contrast, deletion of VEGFR-2 significantly impaired endothelial cell survival. When VEGFR-1 expression was blocked, VEGF constitutively activated Akt signals and thus induced endothelial cell senescence via a p53-dependent pathway. VEGFR-1(+/-) mice exhibited an increase of endothelial Akt activity and showed an impaired neovascularization in response to ischemia, and this impairment was ameliorated in VEGFR-1(+/-) Akt1(+/-) mice. These results suggest that VEGFR-1 plays a critical role in the maintenance of endothelial integrity by modulating the VEGF/Akt signaling pathway.  相似文献   

12.
Vascular endothelial growth factors (VEGFs) have a leading role among variety of angiogenic factors. Together with their receptors, they play an important role in endothelial cell proliferation and/or elongation, migration and vascular morphogenesis. In order to determine their possible role in malignant melanoma progression, VEGF (representing VEGFA), VEGF-C and VEGFR-1, -2, -3 immunohistochemical expression on formalin-fixed, paraffin-embedded tissue sections were evaluated. A total of 196 tissue samples consisting of 130 malignant melanomas (MM) with various vertical depth of invasion, 15 metastatic melanomas, and 66 nevi including dysplastic nevi and melanocytic nevi were analysed. Production of both VEGFs were common in benign melanocytic tumors while MM exhibited significant upregulation of VEGF (p<0.0027) and VEGF-C (p<0.0001). The proteins were also detected within stromal cells surrounding tumors, particularly in fibrocytes/ fibroblasts, macrophages and endothelial cells. They also exhibited significant increase in malignant lesions (p<0.0001). VEGFRs were localized in tumor, as well in stromal cells. Although expression of VEGF receptors was significantly higher in MM versus nevi (p<0.002 for VEGFR-1, p<0.004 for VEGFR-2 and p<0.0001 for VEGFR-3), a considerable percentage of MM were negative. There were no correlations between sentinel node positivity and all investigated proteins. When clinical outcome was evaluated, progression of the disease positively correlated with VEGF (p<0,007) and VEGF-C (p<0,008) expression VEGF (p<0.001) and VEGF-C (p<0.0001) positively correlated with nestin expression in the capillary endothelium, which was used for angiogenesis detection. Our work demonstrated that upregulation of VEGFs is associated with progression of malignant melanomas. The protein expression in the tumor microenvironment highlights their importance in malignant stromal phenotype which may serve as a potential target for the anticancer therapy.  相似文献   

13.
The endothelial cells lining all vessels of the circulatory system have been recognized as key players in a variety of physiological and pathological settings. They act as regulators of vascular tone via the inducible nitric oxide system and in angiogenesis, the formation of blood vessels de novo. Aberrant regulation of endothelial cells contributes to tumor formation, atherosclerosis, and diseases such as psoriasis and rheumatoid arthritis. Among the most recently discovered growth factors for endothelial cells are newly isolated members of the platelet-derived growth factor/vascular endothelial growth factor (VEGF) family, VEGF-B, VEGF-C, and VEGF-D. VEGF-C is the ligand for the receptor tyrosine kinase VEGFR-3 (also known as Flt4), which is expressed predominantly in lymphatic endothelium of adult tissues, but a proteolytically processed form of VEGF-C can also activate VEGFR-2 of blood vessels. The lymphatic vessels have been known since the 17th century, but their specific roles in health and disease are still poorly understood. With the discovery of VEGF-C and its cognate receptor VEGFR-3, the regulation and functions of this important component of the circulatory system can be investigated.  相似文献   

14.
Intrahepatic bile ducts maintain a close anatomical relationship with hepatic arteries. During liver ontogenesis, the development of the hepatic artery appears to be modulated by unknown signals originating from the bile duct. Given the capability of cholangiocytes to produce angiogenic growth factors and influence peribiliary vascularization, we studied the immunohistochemical expression of vascular endothelial growth factor (VEGF), angiopoietin-1, angiopoietin-2, and their cognate receptors (VEGFR-1, VEGFR-2, Tie-2) in fetal human livers at different gestational ages and in mice characterized by defective biliary morphogenesis (Hnf6(-/-)). The results showed that throughout the different developmental stages, VEGF was expressed by developing bile ducts and angiopoietin-1 by hepatoblasts, whereas their cognate receptors were variably expressed by vascular cells according to the different maturational stages. Precursors of endothelial and mural cells expressed VEGFR-2 and Tie-2, respectively. In immature hepatic arteries, endothelial cells expressed VEGFR-1, whereas mural cells expressed both Tie-2 and Angiopoietin-2. In mature hepatic arteries, endothelial cells expressed Tie-2 along with VEGFR-1. In early postnatal Hnf6(-/-) mice, VEGF-expressing ductal plates failed to incorporate into the portal mesenchyma, resulting in severely altered arterial vasculogenesis. CONCLUSION: The reciprocal expression of angiogenic growth factors and receptors during development supports their involvement in the cross talk between liver epithelial cells and the portal vasculature. Cholangiocytes generate a VEGF gradient that is crucial during the migratory stage, when it determines arterial vasculogenesis in their vicinity, whereas angiopoietin-1 signaling from hepatoblasts contributes to the remodeling of the hepatic artery necessary to meet the demands of the developing epithelium.  相似文献   

15.
Modulation of VEGFR-2-mediated endothelial-cell activity by VEGF-C/VEGFR-3   总被引:12,自引:3,他引:12  
Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR-3), a receptor for VEGF-C, was shown to be essential for angiogenesis as well as for lymphangiogenesis. Targeted disruption of the VEGFR-3 gene in mice and our previous study using an antagonistic monoclonal antibody (MoAb) for VEGFR-3 suggested that VEGF-C/VEGFR-3 signals might be involved in the maintenance of vascular integrity. In this study we used an in vitro embryonic stem (ES) cell culture system to maintain the VEGFR-3(+) endothelial cell (EC) and investigated the role of VEGFR-3 signals at the cellular level. In this system packed clusters of ECs were formed. Whereas addition of exogenous VEGF-A induced EC dispersion, VEGF-C, which can also stimulate VEGFR-2, promoted EC growth without disturbing the EC clusters. Moreover, addition of AFL4, an antagonistic MoAb for VEGFR-3, resulted in EC dispersion. Cytological analysis showed that VEGF-A- and AFL4-treated ECs were indistinguishable in many aspects but were distinct from the cytological profile induced by antagonistic MoAb for VE-cadherin (VECD-1). As AFL4- induced EC dispersion requires VEGF-A stimulation, it is likely that VEGFR-3 signals negatively modulate VEGFR-2. This result provides new insights into the involvement of VEGFR-3 signals in the maintenance of vascular integrity through modulation of VEGFR-2 signals. Moreover, our findings suggest that the mechanisms underlying AFL4-induced EC dispersion are distinct from those underlying VECD-1-induced dispersion for maintenance of EC integrity.  相似文献   

16.
Neuropilin 2 (NRP2) is a receptor for the vascular endothelial growth factor (VEGF) and the semaphorin (SEMA) families, 2 unrelated ligand families involved in angiogenesis and neuronal guidance. NRP2 specifically binds VEGF-A and VEGF-C, although the biological relevance of these interactions in human endothelial cells is poorly understood. In this study, we show that both VEGF-A and VEGF-C induce the interaction of NRP2 with VEGFR-2. This interaction correlated with an enhancement of the VEGFR-2 phosphorylation threshold. Overexpression of NRP2 in primary human endothelial cells promoted cell survival induced by VEGF-A and VEGF-C. In contrast, SEMA3F, another ligand for NRP2, was able to inhibit human endothelial cell survival and migration induced by VEGF-A and VEGF-C. Moreover, a siRNA targeting specifically NRP2 was a potent inhibitor of human endothelial cell migration induced by VEGF-A and VEGF-C. Thus, our data indicate that NRP2 acts as a coreceptor that enhances human endothelial cell biological responses induced by VEGF-A and VEGF-C.  相似文献   

17.
Angiogenesis and lymphangiogenesis in parathyroid proliferative lesions   总被引:2,自引:0,他引:2  
Angiogenesis and lymphangiogenesis are involved in tumoral growth and metastatic spread. There is little information on angiogenesis and no available data on lymphangiogenesis in parathyroid glands (PTG). Using immunohistochemistry for CD34, LYVE-1 (specific markers for vascular and lymphatic endothelium, respectively), vascular endothelial growth factor (VEGF)-A, VEGF-C, and fibroblast growth factor (FGF)-2, this study analyzes microvascular density (MVD), lymphatic vascular density (LVD), and expression of angiogenic and lymphangiogenic growth factors in 13 normal PTG, 77 parathyroid adenomas (PTA), and 17 primary parathyroid hyperplasia (PPH). MVD was higher in PPH and PTA, compared with PTG (P < 0.001). There was no difference in VEGF-A expression among groups. In contrast, FGF-2 expression was higher in PPH, compared with PTA and PTG (P < 0.0001). FGF-2 scores and MVD were significantly correlated (r = 0.43). LVD did not differ among groups, and VEGF-C expression was unrelated to LVD. There was no relationship between MVD and tumor behavior (adenoma size, PTH, or calcium). In conclusion, this study shows increased angiogenesis in parathyroid proliferative lesions compared with normal glands and suggests that FGF-2 is proangiogenic in parathyroid tissue. In PTA, tumor behavior is not related to angiogenic phenotype. This is the first demonstration of lymphatic vessels in PTG, but the lack of correlation with VEGF-C expression suggests that VEGF-C is not the primary lymphangiogenic factor.  相似文献   

18.
Antiangiogenic agents block the effects of tumor-derived angiogenic factors (paracrine factors), such as vascular endothelial growth factor (VEGF), on endothelial cells (EC), inhibiting the growth of solid tumors. However, whether inhibition of angiogenesis also may play a role in liquid tumors is not well established. We recently have shown that certain leukemias not only produce VEGF but also selectively express functional VEGF receptors (VEGFRs), such as VEGFR-2 (Flk-1, KDR) and VEGFR1 (Flt1), resulting in the generation of an autocrine loop. Here, we examined the relative contribution of paracrine (EC-dependent) and autocrine (EC-independent) VEGF/VEGFR signaling pathways, by using a human leukemia model, where autocrine and paracrine VEGF/VEGFR loops could be selectively inhibited by neutralizing mAbs specific for murine EC (paracrine pathway) or human tumor (autocrine) VEGFRs. Blocking either the paracrine or the autocrine VEGF/VEGFR-2 pathway delayed leukemic growth and engraftment in vivo, but failed to cure inoculated mice. Long-term remission with no evidence of disease was achieved only if mice were treated with mAbs against both murine and human VEGFR-2, whereas mAbs against human or murine VEGFR-1 had no effect on mice survival. Therefore, effective antiangiogenic therapies to treat VEGF-producing, VEGFR-expressing leukemias may require blocking both paracrine and autocrine VEGF/VEGFR-2 angiogenic loops to achieve remission and long-term cure.  相似文献   

19.
In contrast to the established role of blood vessel remodeling in inflammation, the biologic function of the lymphatic vasculature in acute inflammation has remained less explored. We studied 2 established models of acute cutaneous inflammation, namely, oxazolone-induced delayed-type hypersensitivity reactions and ultraviolet B irradiation, in keratin 14-vascular endothelial growth factor (VEGF)-C and keratin 14-VEGF-D transgenic mice. These mice have an expanded network of cutaneous lymphatic vessels. Transgenic delivery of the lymphangiogenic factors VEGF-C and the VEGFR-3 specific ligand mouse VEGF-D significantly limited acute skin inflammation in both experimental models, with a strong reduction of dermal edema. Expression of VEGFR-3 by lymphatic endothelium was strongly down-regulated at the mRNA and protein level in acutely inflamed skin, and no VEGFR-3 expression was detectable on inflamed blood vessels and dermal macrophages. There was no major change of the inflammatory cell infiltrate or the composition of the inflammatory cytokine milieu in the inflamed skin of VEGF-C or VEGF-D transgenic mice. However, the increased network of lymphatic vessels in these mice significantly enhanced lymphatic drainage from the ear skin. These results provide evidence that specific lymphatic vessel activation limits acute skin inflammation via promotion of lymph flow from the skin and reduction of edema formation.  相似文献   

20.
RATIONALE: In mice, vascular endothelial growth factor-C (VEGF-C) plays an important role in development of the lymphatic system and in pathogenesis of pulmonary inflammation. Its role in development of the lymphatic system in human lung and in lung injury in newborns remains unclear. OBJECTIVES: We studied the role of VEGF-C in developing human lung, and in acute and chronic lung injury in preterm infants. METHODS: Included in the immunohistochemistry study were 10 fetuses, 15 control neonates without primary lung disease, 15 preterm infants with respiratory distress syndrome, and 8 infants with bronchopulmonary dysplasia. Tracheal aspirate fluid samples of intubated very-low-birth-weight infants during Postnatal Weeks 1-5 were analyzed with ELISA. RESULTS: Bronchiolar staining for VEGF-C was observed in all 48 samples. Alveolar epithelial staining was seen in most fetuses (8/10). In addition, staining was observed in alveolar macrophages in bronchopulmonary dysplasia (4/8), and late respiratory distress syndrome (2/7). VEGF receptor-3 (VEGFR-3) staining was observed in lymphatic endothelium adjacent to vascular endothelium. VEGF-C was expressed consistently in tracheal aspirate fluid, being highest during the first 2 postnatal days. Antenatal administration of glucocorticoids was associated with higher VEGF-C in tracheal aspirate fluid. CONCLUSIONS: The pattern of pulmonary VEGF-C and VEGFR-3 protein expression and consistent VEGF-C protein appearance in tracheal aspirate fluid in human preterm infants indicate a role for VEGF-C in the physiologic development of the lymphatic system of the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号