首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of force applied to a 430 micron single fiber, delivering 60 pulses of 308 nm XeCl laser radiation at 20 Hz, on the ablation depth in porcine aortic tissue under saline has been investigated. Energy densities of 8, 15, 25, 28, 31, 37, and 45 mJ/mm2 were used. Force was applied by adding weights from 0 to 10 grams to the fiber. The fiber penetration was monitored by means of a position transducer. At 0 grams, the ablation depth increased linearly with incident energy density, but the fiber did not penetrate the tissue; with any weight added, the fiber penetrated the tissue at energy densities above 15 mJ/mm2. The fiber did not penetrate during the first several pulses, possibly due to gas trapped under the fiber. After these first pulses, a smooth linear advancement of the fiber began, which lasted until the pulse train stopped. The ablation depth increased with increasing energy densities and weights. This effect was largest above 25 mJ/mm2 where the ablation efficiencies (unit mm3/J), with weights added to the fiber, were substantially larger than values found in 308 nm ablation experiments described in the literature, which were conducted with either a focused laser beam or a fiber without additional force. The results imply that in 308 nm excimer laser angioplasty, force must be applied to the beam delivery catheter for efficient recanalization, and that experiments performed with a focused beam or without actual penetration of the fiber do not represent the situation encountered in excimer laser angioplasty.  相似文献   

2.
Laser–induced fluorescence may be used to guide laser ablation of atherosclerotic lesions. This study was performed to evaluate arterial autofluorescence spectroscopy in vitro using a single XeCl excimer laser (308 nm) for simultaneous tissue ablation and fluorescence excitation. The laser beam was coupled to a 600-μm silica fiber transmitting 40–50 mJ/mm2 per pulse. The fluorescence radiation emanating retrogradely from the fiber was collected by a concave mirror for spectroscopic analysis over a range of 321–657 nm. The arterial media (n = 26), lipid plaques (n = 26), and calcified lesions (n = 27) of aortic specimens from ten human cadavers were investigated in air, saline, and blood. Whereas the spectrum of calcified lesions changed with the surrounding optical medium, the other spectra remained constant. In air and blood, the spectra of arterial media, lipid plaques, and calcified lesions could be differentiated qualitatively and quantitatively (P < 0.0001). In saline, there was no clearcut spectroscopic difference between lipid plaques and calcified lesions. However, normal arterial media and atherosclerotic lesions (lipid plaques plus calcified lesions) could still be discriminated. Thus spectroscopy and plaque ablation can be combined using a single XeCl excimer laser. These encouraging results should stimulate further studies to determine the potential use of this approach to guide laser angioplasty in humans. © 1994 Wiley-Liss, Inc.  相似文献   

3.
To assess the feasibility of intra-arterial tissue ablation by Holmium:YSGG laser pulses (2.1 microns) in a noncontact mode, the transmission of the laser pulses through saline and blood was measured. The temporal interaction between the 500 microseconds laser pulse and saline at the fiber tip was investigated with time-resolved flash photography. The penetration depth in blood, and saline depended on the fiber output energy. In blood at 37 degrees C, the penetration depth varied from 1.2 to 2.1 mm for intensities of 3.1 to 12.4 J/mm2 per pulse, respectively, whereas its theoretical value for water is 0.33 mm, which is based on the measured absorption coefficient of 3.0 +/- 0.1/mm. The large penetration depth was due to the development of a transparent vapour cavity around the fiber tip. In saline, its maximum length was 4.7 mm. Its maximum width was 2.8 mm. The lifetime of the cavity was 450 microseconds. In blood, ablation of porcine aorta was feasible at a distance of 3 mm. Large fissures observed in adjacent tissue are likely to be caused by the expansion of the vapour cavity. We conclude that, due to a "Moses effect in the microsecond region," Holmium:YSGG tissue ablation is possible through at least 2.7 mm of blood.  相似文献   

4.
A XeCl laser with an optical pulse duration of 35 ns was used to determine the cut depth per laser pulse of postmortem human aorta as a function of laser fluence for four main categories of plaque development. The data indicate that the cut depth per pulse progressively decreases as the degree of calcification increases even at very high (100 mJ/mm2) laser fluences. A comparison was made between the XeCl laser cut rate data obtained using the 35-ns duration laser pulses to data obtained using 200-ns duration pulses for each of the four plaque types. As the degree of tissue calcification increased higher XeCl laser fluences were required for the long pulse case to achieve the same cut depth per pulse as that observed using the shorter pulse duration.  相似文献   

5.
The temporal modification of XeCl laser pulses reflected from human aorta tissue immersed in saline has been studied. Dynamic tissue reflectivity of both normal and atherosclerotic tissues has been examined for various incident pulse fluences between 0.7 and 6.5 J/cm2. Changes in reflected pulse duration are observed for fluences at or above 2.6 J/cm2 with normal tissue targets and 3.0 J/cm2 with calcified plaque. Such reflected pulse analysis may prove useful in identifying tissue targets for ablation during laser angioplasty. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    7.
    Laser angioplasty and laser-assisted angioplasty have become a clinical reality. Producing sharply defined borders of the ablated area with minimal adjacent thermal damage, excimer lasers offer several proven and some potential advantages over conventional systems. To evaluate the feasibility of excimer laser angioplasty, we have treated one patient using 308-nm radiation via a bare fiber in direct contact with the total occlusion of a right femoral artery. The lesion was successfully recanalized, thus allowing easy passage of the balloon catheter and subsequent dilatation. This percutaneous laser recanalization of an occluded peripheral artery is one of the first to be done in man using excimer laser radiation, thus demonstrating that the technique is feasible and the system is potentially useful.  相似文献   

    8.
    193 nm excimer laser ablation of bone   总被引:1,自引:0,他引:1  
    The argon fluoride excimer laser is investigated as a cutting-ablating tool for bone surgery. Quantitative measurements are presented for various fluences of laser energy and number of pulses. Histological data are presented that demonstrate the minimal damage to the surrounding material from the laser interaction. Comparisons are made for non-decalcified and decalcified bone. The differences observed, as a function of decalcification in the fluences required for specified depth penetration, are noted and a possible explanation is suggested.  相似文献   

    9.
    The present study was designed to assess the characteristics of tissue photoemission obtained from normal and atherosclerotic segments of human postmortem femoral arteries by 308 nm excimer laser irradiation of 60 ns pulsewidth. Three ablative (20, 30, and 40 mJ/pulse) and three non-ablative (2.5, 5, and 10 mJ/pulse) energy fluences were employed. Both the activating laser pulses and the induced photoemission were guided simultaneously over one and the same 1,000 micron core optical fiber that was positioned in direct tissue contact perpendicular to the vascular surface. The spectral lineshape of normal arterial and noncalcified atherosclerotic structures was characterized by a broad-continuum, double-peak emission of relevant intensity between wavelengths of 360 and 500 nm, with the most prominent emission in the range of 400-415 (407 nm peak) and 430-445 nm (437 nm peak). Fibrous and lipid atherosclerotic lesions, however, exhibited a significantly reduced intensity at 437 nm compared to normal artery layers (P less than 0.001), expressed as a 407/437 nm ratio of 1.321 +/- 0.075 for fibrous and 1.392 +/- 0.104 for lipid lesions. Normal artery components presented with approximately equal intensity at both emission peaks (407/437 nm ratio: intima, 1.054 +/- 0.033; media, 1.024 +/- 0.019; adventitia, 0.976 +/- 0.021). Comparison of spectral lineshape obtained under various energy fluences within a group of noncalcified tissues disclosed no substantial difference using the 407/437 nm ratio (P greater than 0.05). In contrast, calcified lesions revealed high-intensity multiple-line (397, 442, 461, and 528 nm) emission spectra under ablative energy fluences, whereas a low-intensity broad-continuum, single-peak spectrum resulted from irradiation beyond the ablation threshold. Thus, these findings suggest fluorescence phenomena for broad-continuum spectra, and plasma emission for multiple-line spectra as an underlying photodynamic process. Regardless of the activating energy fluence, spectral analysis of 308 nm activated photoemission provides accurate information about the laser target under standardized in vitro conditions. It is demonstrated that direct contact ablation and simultaneous spectral imaging of the target tissue via the same optical fiber is feasible.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

    10.
    We present the results of 15 XeCl laser coronary artery endarterectomies performed in 13 patients during CABG surgery. The results are very encouraging but they show that the development of new and more efficient laser catheter delivery systems with a better proportion of optical active surface at the distal tip of the multifibre catheters is necessary to reduce the longterm and mid-term rates of restenosis.  相似文献   

    11.
    12.
    A modified exeimer laser energy delivery system was used to irradiate 100 segments of normal and fibrous aorta in vitro. The laser beam was scanned into 8 fiber bundles consisting of 50 fibers each resulting in a reduction of the applied pulse energy. The total repetition rate was increased to 150 Hz in order to keep the repetition rate per fiber bundle close to 20 Hz and to minimize thermal injury. The results demonstrate that effective ablation (etch rate per 8 pulses > 2.0 μm) occurred at an energy fluency of 50 mJ/mm2 in both normal and fibrous aorta. Tissue damage (carbonization, tissue separation, fissures, cracks, and vacuolization) was in a range of 100 ± 28 to 152 ± 30 μm for normal aorta and in a range of 57 ± 35 to 110 ± 39 μm for fibrous aorta. We conclude that effective ablation of normal and fibrous human aorta can be achieved by the application of smooth excimer laser coronary angioplasty. This improvement of excimer laser technology may result in a reduction of shock wave- and cavitation-induced damage leading to a reduction of tissue injury. However, this awaits further in vitro and in vivo confirmation. © 1993 Wiley-Liss, Inc.  相似文献   

    13.
    Far-ultraviolet (far-UV) (193 nm) laser radiation ablates arterial wall tissue, including noncalcified atherosclerotic lesions, with no apparent thermal damage to remaining tissue. This effect contrasts sharply with the thermal damage produced by visible-wavelength laser irradiation. The mechanism by which far-UV radiation interacts with tissue is predominantly photochemical rather than photothermal. Potential clinical applications include thsoe in which geometrically precise removal of tissue, without thermal damage to the reamaining substrate, is desired. Ultraviolet laser catheterization appears practical with respect to the availability of fiberoptic materials and high-pulse-rate excimer lasers.  相似文献   

    14.
    The energetics of 308-nm excimer laser irradiation of human aorta were studied. The heat generation that occurred during laser irradiation of atherosclerotic aorta equaled the absorbed laser energy minus the fraction of energy for escaping fluorescence (0.8-1.6%) and photochemical decomposition (2%). The absorbed laser energy is equal to the total delivered light energy minus the energy lost as specular reflectance (2.4%, air/tissue) and diffuse reflectance (11.5-15.5%). Overall, about 79-83.5% of the delivered light energy was converted to heat. We conclude that the mechanism of XeCl laser ablation of soft tissue involves thermal overheating of the irradiated volume with subsequent explosive vaporization. The optical properties of normal wall of human aorta and fibrous plaque, both native and denatured were determined. The light scattering was significant and sufficient to cause a subsurface fluence (J/cm2) in native aorta that equaled 1.8 times the broad-beam radiant exposure, phi o (2.7 phi o for denatured aorta). An optical fiber must have a diameter of at least 800 microns to achieve a maximum light penetration (approximately 200 microns for phi o/e) in the aorta along the central axis of the beam.  相似文献   

    15.
    Laser-induced fluorescence (LIF) spectroscopy can only be used for laser angioplasty guidance if high-power laser ablation does not significantly alter the pattern of tissue fluorescence. Although the spectra of normal and atherosclerotic arteries differ, the change in fluorescence spectra following laser angioplasty has not been well studied. Therefore, the purpose of this study was to assess whether laser-induced fluorescence spectroscopy could guide selective laser ablation of atherosclerotic plaque and, if so, to develop a quantitative LIF score that could be used to control a "smart" laser angioplasty system. Baseline LIF spectroscopy of 50 normal and 50 atherosclerotic human aortic specimens was performed using an optical fiber coupled to a He-Cd laser and optical multichannel analyzer. LIF was then serially recorded during erbium:YAG laser ablation of 27 atherosclerotic specimens. Laser ablation was terminated when the arterial LIF spectrum visually appeared normal. Histologic analysis revealed a mean initial plaque thickness of 1,228 +/- 54 microns and mean residual plaque thickness of 198 +/- 27 microns. Ablation of the media occurred in only three specimens. A discriminant function was derived to discriminate atherosclerotic from normal tissue for computer guidance of laser angioplasty. The LIF score, derived from stepwise multivariate linear regression analysis of the LIF spectra, correctly classified 93% of aortic specimens. The spectra obtained from the atherosclerotic specimens subjected to fluorescence-guided laser revealed a change in score from "atherosclerotic" to "normal" following plaque ablation. Seven atherosclerotic specimens were subjected to laser angioplasty with on-line computer control using the LIF score. Mean initial plaque thickness was 1,014 +/- 86 microns, and mean residual plaque thickness was 78 +/- 29 microns. There was no evidence of ablation of the media. Therefore, LIF guidance of laser ablation resulted in minimal residual plaque without arterial perforation. These findings support the feasibility of an LIF-guided laser angioplasty system for selective atherosclerotic plaque ablation.  相似文献   

    16.
    The argon-fluoride excimer laser was investigated as a cutting-ablating tool for bone surgery. A total of 52 rats were divided into two experimental groups and two control groups. In one experimental group cortical bone defects were made; in another experimental group defects penetrating into the medullary space were performed. In the two control groups similar defects were achieved using water-cooled carbide burs. The rats were sacrificed on each of the 3, 7, 10, 20, 30, and 40 postoperative day. The cortical bone, the medullary space, and the extrabony tissue were examined by means of light microscopy. In both experimental groups, bone damage, represented by osteocyte destruction, extended to 1,050-1,450 microns ahead from the irradiated site, and bone healing was very much impaired. In the control groups no histological changes could be identified and bone healing appeared to be within normal limits. We believe this extensive bone damage, following 193 nm irradiation, to be a result of photoacoustic waves propagating in the bone following each pulse. In view of our results we feel that excimer lasers presently in use are not suitable for bone surgery. This problem of photoacoustic damage can be overcome in one of two ways: by designing a CW excimer laser or by reducing the pulse width to the picosecond regime.  相似文献   

    17.
    Despite the theoretical advantages of submicrosecond pulsing for clinical laser angioplasty systems, the optimal laser parameters for clinical application are undefined. Further, the enormous peak powers achieved by submicrosecond pulses destroy available fiberoptics. We irradiated 797 segments of cadaver atherosclerotic aorta with nanosecond pulses at 266, 308, 355, 532, and 1064 nanometers. Effective cutting occurred at lower energy fluences in the ultraviolet than in the visible or infrared. For 308 nanometers, at any energy density, number of pulses to perforation was relatively independent of power density. Therefore, long-pulse ultraviolet wavelengths which could be transmitted through fiberoptics were identified as well suited for a clinical, submicrosecond pulsed laser angioplasty system.  相似文献   

    18.
    The excimer laser underwent phase I clinical trials at three centers to determine its safety for intraoperative coronary laser angioplasty as an adjunct to coronary artery bypass grafting. A 308-nm Xenon-Chloride, pulsed-wave excimer laser was used to perform angioplasty in 30 patients undergoing coronary artery bypass surgery. Forty vessels (30 patients) were treated, in which the extent of occlusion ranged from 30% to 100%, with complete occlusion in 40% of all vessels. Improvement in vessel luminal caliber was achieved in 33 (79%) vessels, with perforations occurring in 4 (12%) vessels, 2 of which required surgical repair. The lumens of the remaining 8 (19%) vessels were not enlarged, and 2 (5%) of these vessels were perforated. Luminal enlargement was most often achieved in totalled occluded vessels in which 16/17 (94%) were recanalized. No patients died within 30 days postoperatively. Five patients demonstrated biochemical and electrocardiographic evidence of myocardial injury 48 hr postoperatively, and one patient died of cardiac arrest 139 days postoperatively. On the basis of these results, we believe that excimer laser angioplasty can be performed safely to improve coronary luminal patency, even in totally occluded vessels, in an operative setting. The long-term value of this procedure remains to be elucidated.  相似文献   

    19.
    Excimer laser radiation at 193 nm and 248 nm was used to create linear etch perforations of enucleated calf corneas. The etch depth per pulse was determined for various exposures, and specimens were examined by light and transmission electron microscopy. Compared to 248 nm, excimer laser ablation at 193 nm was found to have a lower threshold for onset of ablation, less increase in etch depth per pulse at increasing fluences, and less structural alteration in adjacent cornea. For 193 nm, structural alterations were minimal, confined to an area less than 0.3 micron wide, and did not increase with increasing fluence. These studies suggest that clinical strategies for excimer laser refractive surgery will employ the 193-nm wavelength, with fluence chosen depending on surgical strategy. Ablation exposures above 600 mJ/cm2 at 193 nm may give the most repeatable etch depth.  相似文献   

    20.
    Laser angioplasty systems with laser energy preferentially absorbed by atherosclerotic plaque may offer a safe method of plaque removal. This study evaluated the effect of blood upon selective energy absorption using a pulsed dye laser at 480 nm. Intra-arterial laser irradiation of normal rabbit femoral arteries demonstrated a perforation threshold energy with blood perfusion of 13.1 mJ per pulse compared to 87.9 mJ with saline (P less than .0001), indicating a deleterious effect in the presence of blood. An adverse effect upon arterial healing at 3 days was noted in sheep following intra-arterial irradiation during blood but not saline perfusion. Normal and atherosclerotic human aorta ablation thresholds differed significantly (P less than .0002) under saline (plaque: 20 mJ and normal: 120 mJ) but the difference under blood (plaque: 5 mJ and normal: 20 mJ) was not significant. We conclude that absorption of laser energy by blood can reduce the effect of differential absorption by endogenous chromophores in normal and pathologic vascular tissues and, therefore, removal of blood may be a prerequisite for selective ablation of atherosclerotic plaques.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号