首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dioeleoylphosphatidylethanolamine (DOPE)-based liposomes were recently reported as a new class of liposomes for ultrasound (US)-mediated drug delivery. The liposomes showed both high stability and in vitro US-mediated drug release (sonosensitivity). In the current study, in vivo proof-of-principle of US triggered release in tumoured mice was demonstrated using optical imaging. Confocal non-thermal US was used to deliver cavitation to tumours in a well-controlled manner. To detect in vivo release, the near infrared fluorochrome Al (III) Phthalocyanine Chloride Tetrasulphonic acid (AlPcS4) was encapsulated into both DOPE-based liposomes and control liposomes based on hydrogenated soy phosphatidylcholine (HSPC). Encapsulation causes concentration dependent quenching of fluorescence that is recovered upon AlPcS4 release from the liposomes. Exposure of tumours to US resulted in a significant increase in fluorescence in mice administered with DOPE-based liposomes, but no change in the mice treated with HSPC-based liposomes. Thus, DOPE-based liposomes showed superior sonosensitivity compared to HSPC-based liposomes in vivo.  相似文献   

2.
Doxorubicin-loaded PEGylated liposomes (commercially available as DOXIL® or Lipodox®) were surface functionalized with a cell-penetrating peptide, octa-arginine (R8). For this purpose, R8-peptide was conjugated to the polyethylene glycol–dioleoyl phosphatidylethanolamine (PEG–DOPE) amphiphilic co-polymer. The resultant R8–PEG–PE conjugate was introduced into the lipid bilayer of liposomes at 2 mol% of total lipid amount via spontaneous micelle-transfer technique. The liposomal modification did not alter the particle size distribution, as measured by Particle Size Analyzer and transmission electron microscopy (TEM). However, surface-associated cationic peptide increased zeta potential of the modified liposomes. R8-functionalized liposomes (R8-Dox-L) markedly increased the intracellular and intratumoral delivery of doxorubicin as measured by flow cytometry and visualizing by confocal laser scanning microscopy (CLSM) compared to unmodified Doxorubicin-loaded PEGylated liposomes (Dox-L). R8-Dox-L delivered loaded Doxorubicin to the nucleus, being released from the endosomes at higher efficiency compared to unmodified liposomes, which had marked entrapment in the endosomes at tested time point of 1 h. The significantly higher accumulation of loaded drug to its site of action for R8-Dox-L resulted in improved cytotoxic activity in vitro (cell viability of 58.5 ± 7% for R8-Dox-L compared to 90.6 ± 2% for Dox-L at Dox dose of 50 μg/mL for 4 h followed by 24 h incubation) and enhanced suppression of tumor growth (348 ± 53 mm3 for R8-Dox-L, compared to 504 ± 54 mm3 for Dox-L treatment) in vivo compared to Dox-L. R8-modification has the potential for broadening the therapeutic window of pegylated liposomal doxorubicin treatment, which could lead to lower non-specific toxicity.  相似文献   

3.
Drug release from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes occurs close to the main transition temperature Tm = 41 °C. The exact release temperature can be adjusted by additional lipids, which shift Tm. A major issue is drug leakage at 37 °C. We here describe a novel approach with improved drug retention yet rapid release. To obtain spherical, smooth liposomes we included: i) 2 mol% cholesterol, to soften bilayers (Lemmich et al 1997), ii) lipids, which due to their spontaneous curvature stabilize the negative and positive curvatures of the inner and outer leaflets of unilamellar liposomes. In addition to differential scanning calorimetry (DSC) and fluorescence spectroscopy, the lipid mixtures were analyzed by a Langmuir balance for their elastic properties and lipid packing, aiming at high elasticity modulus CS 1. Maxima in CS 1 coincided with minima in the free energy of lateral mixing. These liposomes have reduced drug leakage, yet retain rapid release.From the Clinical EditorThis paper reports the development of optimized DPPC liposomes for drug delivery, with reduced drug leakage but maintained rapid release.  相似文献   

4.
The effect of membrane composition on calcein release from dioleoylphosphatidylethanolamine (DOPE)-based liposomes on exposure to low doses of 1.13 MHz focused ultrasound (US) was investigated by multivariate analysis, with the goal of designing liposomes for US-mediated drug delivery. Regression analysis revealed a strong correlation between sonosensitivity and the non-bilayer forming lipids DOPE and pegylated distearoylphosphatidylethanolamine (DSPE-PEG 2000), with DOPE having the strongest impact. Unlike most of the previously studied distearoylphosphatidylethanolamine (DSPE)-based liposomes, all the current DOPE-based liposome formulations were found stable in 20% serum in terms of drug retention.  相似文献   

5.
Liposomes have been used widely to improve the therapeutic activity of pharmaceutical agents. The traditional approach for such applications has been to formulate the pharmaceutical agent in liposomes prior to administration in vivo. In this report we demonstrate that liposomes exhibiting a transmembrane pH gradient injected intravenously (iv) can actively encapsulate doxorubicin in the circulation after iv administration of free drug. Small (110 nm) liposomes composed of phosphatidylcholine (PC)/cholesterol (Chol, 55:45 mol: mol) exhibiting a pH gradient (inside acidic) were administered iv 1 h prior to free doxorubicin, and plasma drug levels as well as toxicity and efficacy were evaluated. Predosing with egg PC/Chol pH gradient liposomes increased the plasma concentration of doxorubicin as much as 200‐fold compared to free drug alone as well as to predosing with dipalmitoyl PC/Chol pH gradient liposomes or EPC/Chol liposomes without a pH gradient. The ability of the liposomes to alter the pharmacokinetics of doxorubicin was dependent on the presence of a transmembrane pH gradient and correlated with the extent of doxorubicin uptake into the liposomes at 37 °C in pH 7.5 buffer, indicating that doxorubicin was being actively accumulated in the circulating liposomes. This in vivo drug loading was achieved over a range of doxorubicin doses (5 mg/kg–40 mg/kg) and was dependent on the dose of EPC/Chol liposomes administered prior to free doxorubicin injection. The altered pharmacokinetic properties of doxorubicin associated with in vivo doxorubicin encapsulation were accompanied by a decrease in drug toxicity and maintained antitumor potency. These results suggest that pretreatment with empty liposomes exhibiting a pH gradient may provide a versatile and straightforward method for enhancing the pharmacological properties of many drugs that can accumulate into such vesicle systems at physiological temperatures.  相似文献   

6.
Doxorubicin (DOX) is an anticancer drug with an intracellular site of action in the nucleus. For high antitumour activity, it should be effectively internalized into the cancer cells and accumulate in the nucleus. In this study, we have prepared a nuclear localization signal conjugated doxorubicin loaded Poly (d,l-lactide-co-glycolide) nanoparticles (NPs), to deliver doxorubicin to the nucleus efficiently. Physico-chemical characterization of these NPs showed that the drug is molecularly dispersed in spherical and smooth surfaced nanoparticles. NPs (~226 nm in diameter, 46% encapsulation efficiency) under in vitro conditions exhibited sustained release of the encapsulated drug (63% release in 60 days). Cell cytotoxicity results showed that NLS conjugated NPs exhibited comparatively lower IC50 value (2.3 μM/ml) than drug in solution (17.6 μM/ml) and unconjugated NPs (7.9 μM/ml) in breast cancer cell line MCF-7 as studied by MTT assay. Cellular uptake studies by confocal laser scanning microscopy (CLSM) and fluorescence spectrophotometer showed that greater amount of drug is targeted to the nucleus with NLS conjugated NPs as compared to drug in solution or unconjugated NPs. Flow cytometry experiments results showed that NLS conjugated NPs are showing greater cell cycle (G2/M phase) blocking and apoptosis than native DOX and unconjugated NPs. In conclusion, these results suggested that NLS conjugated doxorubicin loaded NPs could be potentially useful as novel drug delivery system for breast cancer therapy.  相似文献   

7.
Nanosized liposomal drug delivery systems are well suited for selective drug delivery at tumor sites. Celecoxib (CLX) is a highly hydrophobic cyclooxygenase-2 inhibitor that can reduce the incidence of colorectal polyps; however, the adverse cardiovascular effects limit its applicability. Here, we report a liposomal formulation of CLX using 1,2-Distearoyl-sn-glycero-3-phosphocholine, cholesterol, and polyethylene glycol. Encapsulation efficiency of the drug was greater than 70%; the release was slow and sustained with only 12%–20% of CLX released in the first 12 h. Flow cytometry and confocal microscopy studies using the colon cancer cell lines HCT-116 and SW620 showed significantly higher cellular association and internalization of the liposomes after incubation for 6 h when compared with 30 min. The liposomes did not colocalize with transferrin, but had a punctuate appearance, indicating vesicular localization. Cell proliferation was inhibited by 95% and 78%, respectively, in SW620 and HT29 cells after incubation with 600 μM liposomal CLX for 72 h. Moreover, cellular motility, as shown by a scratch wound healing assay, was also significantly (p = 0.006) inhibited when SW620 cells were incubated with 400 μM liposomal CLX. This is the first report of the successful encapsulation of CLX in a long-circulating liposomal formulation that could be effective against colorectal cancer.  相似文献   

8.
Nystatin (NYS) is a polyene macrolide with broad antifungal spectrum restricted to topical use owing to its toxicity upon systemic administration. The aims of this work were the design, development, and optimization of NYS-loaded lipid emulsion for intravenous administration. A closed circuit system was designed to apply ultrasound during the elaboration of the lipid intravenous emulsions (LIEs). Additionally, a comparison with the commercially available Intralipid® 20% was also performed. Manufacturing conditions were optimized by factorial design. Formulations were evaluated in terms of physicochemical parameters, stability, release profile, and antimicrobial activity. The average droplet size, polydispersity index, zeta-potential, pH, and volume distribution values ranged between 192.5 and 143.0 nm, 0.170 and 0.135, ? 46 and ? 44 mV, 7.11 and 7.53, 580 and 670 nm, respectively. The selected NYS-loaded LIE (NYS-LIE54) consisted of soybean oil (30%), soybean lecithin (2%), solutol HS® 15 (4%), and glycerol (2.25%) was stable for at least 60 days. In vitro drug release studies of this formulation suggested a sustained-release profile. Equally, NYS-LIE54 showed the best antimicrobial activity being higher than the free drug. Thus, it could be a promising drug delivery system to treat systemic fungal infections.  相似文献   

9.
Peritoneal carcinomatosis is a serious concern when treating digestive or ovarian tumors. Treatment with systemic chemotherapy suffers from poor penetration of cytotoxic agents into the peritoneal cavity and is not quite effective. Local delivery of drugs, especially as controlled-release delivery systems like liposomes, could provide sustained and higher drug levels and reduce systemic toxicity.In order to investigate the effect of liposome size on peritoneal retention, liposomes composed of distearoylphosphatidylcholine and cholesterol (DSPC/CHOL, molar ratio 2:1) were prepared at four sizes of 100, 400, 1000 and 3000 nm. Subsequently, these liposomes were labeled with 99mTc complex of hexamethylpropyleneamineoxime (99mTc-HMPAO) and injected into mouse peritoneum. Then, mice were sacrificed at eight different time points and the percentage of injected radiolabel in the peritoneal cavity and the organ distribution in terms of percentage injected dose/gram tissue (%ID/g) were obtained.Results showed that the free label (99mTc-HMPAO) was cleared very rapidly from the cavity so that after 5 min and 7 h only 6.89 ± 2.51% and 0.91 ± 0.51% of the injected dose was recovered, respectively. However, for the liposomal formulations, this recovery value ranged from 8.47 ± 1.62% to 29.99 ± 12.06% at 7 h. Peritoneal retention of the vesicles was increased with their size, and the highest retention rate was obtained with 1000 nm liposomes with an AUC value 15.51 times that of 99mTc-HMPAO. In blood, as expected, 100 nm liposomes showed much higher levels because of their greater stability. Their greater blood concentration also caused increased levels in the heart and kidneys, although their organ to blood AUC ratio was the lowest.Overall, among the different sized neutral liposomes investigated, the 1000 nm vesicles seemed to be the most optimal, achieving a greater peritoneal level and retention.  相似文献   

10.
Vesicles of mPEG-PLGA block copolymer were developed to deliver a therapeutic quantity of doxorubicin (DOX) for breast cancer treatment. The DOX-loaded nanoparticles (NPs) were prepared by the pH-gradient method and then evaluated in terms of morphology, size, DOX encapsulation efficiency and in vitro drug release mechanism.The PEG-PLGA nanopolymersomes were 134 ± 1.2 nm spherical NPs with a narrow size distribution (PDI = 0.121). DOX was entrapped in mPEG-PLGA nanopolymersomes with an encapsulation efficiency and a loading content of 91.25 ± 4.27% and 7.3 ± 0.34%, respectively. The DOX-loaded nanopolymersomes were found to be stable, demonstrating no significant change in particle size and encapsulation efficiency (EE%) during the 6-month storage period of the lyophilized powder at 4 °C. The nanopolymersomes sustained the release of DOX. In cytotoxicity studies of 4T1 cell line samples, free DOX showed a higher cytotoxicity (IC50 = 1.76 μg/mL) than did DOX-loaded nanopolymersomes (15.82 μg/mL) in vitro. In order to evaluate the antitumor efficacy and biodistribution of DOX-loaded nanopolymersomes, murine breast tumors were established on the BALB/c mice, and in vivo studies were performed. The obtained results demonstrated that the prepared drug delivery system was highly effective against a murine breast cancer tumor model and successfully accumulated in the tumor site through an enhanced permeation and retention mechanism.In vivo studies also proved that DOX-loaded nanopolymersomes are stable in blood circulation and could be considered a promising and effective DOX delivery system for breast cancer treatment.  相似文献   

11.
Poly-l-lysine (PLL) dendrimers are currently being investigated as antiangiogenic agent for therapy of cancer. In this study, we report folate conjugated poly-l-lysine dendrimers (FPLL) as an efficient carrier for model anticancer drug, doxorubicin hydrochloride (Dox); for pH sensitive drug release, selective targeting to cancer cells, anticancer activity and antiangiogenic activity. This nanoconjugate of Dox showed initial rapid in vitro release followed by gradual slow release, and the drug release was found to be pH sensitive with greater release at acidic pH. In the CAM assay and tubule formation assay with HUVEC, Dox-FPLL formulation showed the significant antiangiogenic activity confirming that activity of PLL was not compromised by the presence of Dox and folic acid. The ex vivo investigations with human breast cancer cell lines MCF-7 showed enhanced cytotoxicity of Dox-FPLL with significantly enhanced intracellular uptake (p < 0.001). The in vivo therapeutic potential of nanoconjugate was determined in MCF-7 breast cancer xenograft model in tumor-bearing mice. Dox-FPLL increased the concentration of Dox in tumor by 121.5-fold after 24 h in comparison with free Dox formulation. The folate conjugated dendrimeric Dox showed superior anti-tumor activity in tumor xenograft model with significantly prolonged survival determined by Kaplan Meier survival analysis (p < 0.001).  相似文献   

12.
Prolonged analgesia may be achieved using a single injection of slow-release local anesthetic formulation. The study objective was to improve the efficacy of a previously reported formulation comprising 10% bupivacaine in poly(dl:lactic acid co castor oil) 3:7. The polymer was loaded with 15% bupivacaine and injected through a 22G needle close to the sciatic nerve of ICR mice. Sensory and motor nerve blockade were measured. The efficacy and toxicity of the polymer–drug combination were determined. Sixty percent of the incorporated bupivacaine was released during 1 week in vitro. During in vitro release no burst effect was seen, suggesting low toxicity of the formulation. Single injection of 0.1 mL of 15% polymer-bupivacaine formulation caused motor block that lasted 64 h and sensory block that lasted 96 h. The MTD of the polymer–drug formulation was established as 0.175 mL. Microscopic examination of the injection sites revealed reversible nerve inflammation and normal internal organs. The polymer poly(dl:lactic acid co castor oil) 3:7 is a safe carrier for prolonged activity of bupivacaine up to 96 h. The increase of drug load in the formulation reduces the drug release rates due to stronger polymer–drug interactions and higher overall hydrophobicity of the formulation  相似文献   

13.
The potential for microemulsion drug delivery systems to improve the lymphatic transport and the portal absorption of a poorly water-soluble drug, puerarin, were investigated in lymph-cannulated rats. SD rats were operated for lymph duct cannulation and were orally dosed with 3 ml puerarin microemulsion (0.6 mg/g, n = 6). The lymph and plasma were collected over 8 h and the concentrations of puerarin and triglyceride were measured. Similarly, control rats (non-lymph-cannulated, n = 6) were dosed orally with puerarin microemulsion and subsequently with puerarin injection intravenously. Plasma and lymph samples were analysed by HPLC. Lymph triglyceride was measured using an enzymatic colorimetric technique. The extent of lymphatic transport via the thoracic duct was 0.06% of the dose for the animals dosed with puerarin microemulsion. The systemic bioavailability of oral puerarin co-administered with lipid was only 16% in the lymph duct-cannulated rats compared with 40% in the controls. These data clearly indicate that the lymphatic transport process contributes significantly to intestinal absorption of puerarin and subsequently to its systemic bioavailability. The results imply that the pharmaceutical scientist may use microemulsion formulations to optimize lymph-targeting drug delivery systems, by improving the extent of lymphatic transport.  相似文献   

14.
Novel lipid-polymer composite microspheres (LP-MS) were prepared by combining pH-sensitive polymer Eudragit S100 with solid lipid Compritol 888 ATO for colonic delivery of 10-hydroxycamptothecin (HCPT), and pH-dependent controlled drug release has been achieved. The colon-specific biodistribution and uptake by the mucosal tissue were examined using coumarin-6-marked LP-MS. It is proved that good in vitro-in vivo relationship has been achieved, with more drugs being delivered to colon and a higher drug level was maintained for a long period. Moreover, in vivo bioavailability of LP-MS was evaluated with conventional enteric microspheres (enteric MS) as reference. After administration of LP-MS, systemic absorption of HCPT was greatly reduced, with area under the curve from 0 to 24 h (AUC0 -24h, 2.186 ± 0.27) being significantly lower than that of enteric MS group (6.352 ± 0.696). In conclusion, the novel pH-sensitive LP-MS has potential for colon-specific drug delivery.  相似文献   

15.
Targeting amyloid-β peptide (Aβ) within the brain is a strategy actively sought for therapy of Alzheimer's disease (AD). We investigated the ability of liposomes bi-functionalized with phosphatidic acid and with a modified ApoE-derived peptide (mApoE-PA-LIP) to affect Aβ aggregation/disaggregation features and to cross in vitro and in vivo the blood–brain barrier (BBB). Surface plasmon resonance showed that bi-functionalized liposomes strongly bind Aβ (kD = 0.6 μM), while Thioflavin-T and SDS-PAGE/WB assays show that liposomes inhibit peptide aggregation (70% inhibition after 72 h) and trigger the disaggregation of preformed aggregates (60% decrease after 120 h incubation). Moreover, experiments with dually radiolabelled LIP suggest that bi-functionalization enhances the passage of radioactivity across the BBB either in vitro (permeability = 2.5 × 10 5cm/min, 5-fold higher with respect to mono-functionalized liposomes) or in vivo in healthy mice. Taken together, our results suggest that mApoE-PA-LIP are valuable nanodevices with a potential applicability in vivo for the treatment of AD.From the Clinical EditorBi-functionalized liposomes with phosphatidic acid and a modified ApoE-derived peptide were demonstrated to influence Aβ aggregation/disaggregation as a potential treatment in an Alzheimer’s model. The liposomes were able to cross the blood-brain barrier in vitro and in vivo. Similar liposomes may become clinically valuable nanodevices with a potential applicability for the treatment of Alzheimer’s disease.  相似文献   

16.
BackgroundThe unpredictable side effects of a majority currently used drugs are the substantial issue, in which patients and physicians are forced to deal with. Augmenting the therapeutic efficacy of drugs may prove more fruitful than searching for the new ones. Since recent studies show that new cationic derivatives of polyisoprenoid alcohols (APrens) might exhibit augmenting properties, we intend to use them as a component of liposomal drug carriers. In this study we investigate if these compounds do not per se cause untoward effects on the living organism.MethodsMale Sprague–Dawley rats received for four weeks daily injections (0.5 ml sc) of liposomes built of dioleoyl phosphatidylethanolamine (DOPE), liposomes built of DOPE and APren-7 (ratio 10:1) or water solvent. Weekly, rats were observed in metabolic cages (24 h); blood and urine were sampled for analysis; body weight (BW) and systolic blood pressure (SBP) were determined. After chronic experiment, kidneys and heart were harvested for histological and morphometric analysis.ResultsThe 4-week BW increments were in the range of 97 ± 4 to 102 ± 4%, intergroup differences were not significant. Microalbuminuria was the lowest in the group receiving liposomes with APren-7 (0.22 ± 0.03 mg/day). Water and food intake, plasma and urine parameters were similar in all groups.ConclusionsNewly designed liposomes containing APren-7 did not affect functions of the excretory and cardiovascular systems, and renal morphology; therefore we find them suitable as a component of liposomal drug carriers.  相似文献   

17.
The aim of this study was to develop stable parenteral pegylated indinavir submicron lipid emulsions (SLEs) for improving brain specific delivery. The O/W SLEs were prepared by homogenization and ultra sonication process. The sizes of oil globules varied from 241.5 to 296.4 nm and zeta potential from ?26.6 to ?42.4 mV. During in vitro drug release studies the cumulative amount of drug released within 12 h from SLE-5, DSP2-3 and DPP5-3 was 71.8 ± 0.76, 66.09 ± 1.45 and 68.33 ± 1.29, respectively. The total drug content and entrapment efficiencies were determined. The optimized formulations were stable for the effect of centrifugal stress, thermal stress, dilution stress and storage. In vivo pharmacokinetic and tissue distribution studies were performed in Swiss albino mice, the therapeutic availability (TA) of DSP2-3 was 3.59 times and 2.36 times in comparison to drug solution and SLE-5 respectively, where as DPP5-3 showed TA 2.8 and 1.84 times the drug solution and SLE-5, respectively. The brain to serum ratio of indinavir from DSP2-3 and DPP5-3 varied between 0.4 and 0.7 at all time points indicated the preferential accumulation of drug in brain. In conclusion, pegylated SLEs improved brain specific delivery of indinavir and will be useful in treating chronic HIV infection.  相似文献   

18.
A novel targeting drug delivery system (TDDS) has been developed. Such a TDDS was prepared by W1/O/W2 solvent extraction/evaporation method, adopting poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) [P(HB-HO)] as the drug carrier, folic acid (FA) as the targeting ligand, and doxorubicin (DOX) as the model anticancer drug. The average size, drug loading capacity and encapsulation efficiency of the prepared DOX-loaded, folate-mediated P(HB-HO) nanoparticles (DOX/FA–PEG–P(HB-HO) NPs) were found to be around 240 nm, 29.6% and 83.5%. The in vitro release profile displayed that nearly 50% DOX was released in the first 5 days. The intracellular uptake tests of the nanoparticles (NPs) in vitro showed that the DOX/FA–PEG–P(HB-HO) NPs were more efficiently taken up by HeLa cells compared to non-folate-mediated P(HB-HO) NPs. In addition, DOX/FA–PEG–P(HB-HO) NPs (IC50 = 0.87 μM) showed greater cytotoxicity to HeLa cells than other treated groups. In vivo anti-tumor activity of the DOX/FA–PEG–P(HB-HO) NPs showed a much better therapeutic efficacy in inhibiting tumor growth, and the final mean tumor volume was 178.91 ± 17.43 mm3, significantly smaller than normal saline control group (542.58 ± 45.19 mm3). All these results have illustrated that our techniques for the preparing of DOX/FA–PEG–P(HB-HO) NPs developed in present work are feasible and these NPs are effective in selective delivery of anticancer drug to the folate receptor-overexpressed cancer cells. The new TDDS may be a competent candidate in application in targeting treatment of cancers.  相似文献   

19.
The purpose of this study was to develop surface-modified liposomes that enhance the efficiency of eye drop drug delivery to the retina. Various molecular weights and concentrations of the water-soluble cationic polymer poly-l-lysine (PLL) were used to modify the surface of submicronized (100 nm) liposomes. Physicochemical properties of surface-modified liposomes were determined in vitro, and the efficiency of drug delivery to the retina was investigated in vivo. Using coumarin-6 as a model drug and fluorescent marker, we show that liposome surface modification by PLL dramatically increased delivery to mouse retina segments after eye drop administration. However, when PLL of high molecular weight (>30,000) was used at higher concentrations (>0.05%), aggregation of surface-modified liposomes increased particle size and hampered distribution to inner ocular tissues. As a result, the efficiency of drug delivery of these aggregated surface-modified liposomes was the same as unmodified liposomes. The optimal molecular weight and concentration of PLL in drug-delivering liposomes were 15,000–30,000 and 0.005%, respectively. Under these conditions, PLL-modified liposomes were not cytotoxic in corneal or conjunctival cells. In conclusion, surface-modified liposomes have great potential as effective retinal drug delivery carriers in eye drop formulations.  相似文献   

20.
Hydrodynamically balanced systems (HBSs) of ofloxacin were prepared using lactose, HPMC K4M, PVP K 30, and liquid paraffin, which may increase the mean residence time in the gastrointestinal tract, and may be able to provide maximum drug at the site of absorption to improve oral bioavailability. All these formulated HBS capsules were floated well over 6 h with no floating lag time. They also showed sustained drug release over 6 h. Time for 50% release of ofloxacin was within the range, 2.47 ± 0.02 to 3.07 ± 0.08 h. The in vitro drug release from these HBS capsules was dependent on HPMC K4M, PVP K 30, and liquid paraffin content. The drug release pattern of these HBS capsules containing ofloxacin followed the Higuchi model with the anomalous transport mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号