首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this investigation was to determine the influence of simulated ageing on the tetragonal-to-monoclinic phase transformation and on the flexural strength of a 3Y-TZP ceramic, compared to alumina toughened zirconia (ATZ) and ceria-stabilized zirconia (12Ce-TZP). Standardized disc specimens of each material were hydrothermally aged in steam at 134°C and 3bar for 0, 16, 32, 64 or 128h. The phase transformation was determined by X-ray diffraction (XRD) and atomic force microscopy. Scanning electron microscopy was performed to estimate the depth of the transformation zone. The flexural strength was investigated in a biaxial flexural test. XRD revealed a significant increase in the monoclinic phase content for 3Y-TZP and ATZ due to ageing, although this increase was less pronounced for ATZ. In contrast, the monoclinic phase content of 12Ce-TZP was not influenced. For 3Y-TZP and ATZ, a transformation zone was found of which the depth linearly correlated with ageing time, while for 12Ce-TZP no transformation zone could be observed. Changes in flexural strength after ageing were heterogeneous: while 3Y-TZP showed a significant decrease in strength - from 1740 to 1169 MPa - with ATZ there was a considerable increase - from 1093 to 1378 MPa. The flexural strength of 12Ce-TZP remained unaffected at the low level of about 500 MPa. These results indicate that both alumina and ceria, as stabilizing oxides, reduce the susceptibility of zirconia to hydrothermal degradation; the alternative use of these oxides may enhance the clinical long-term stability of dental zirconia restorations.  相似文献   

2.
Recently zirconia/alumina composites have been examined by many researchers as the new generation of bearing materials in total joint replacements. In this study, the phase stability of a Ce-TZP/Al(2)O(3) nanocomposite and conventional Y-TZP after aging, and its influence on wear resistance, were investigated. Very slight phase transformation was observed in both types of ceramics 18 months after the implantation of Ce-TZP/Al(2)O(3) or Y-TZP samples into rabbit tibiae. However, Y-TZP showed marked phase transformation (approximately 80%) after aging in an autoclave (121 degrees C) for 190 h or in physiological saline at 62 degrees C for 18 months, whereas the new composite remained almost resistant to degradation. According to the results of self-pairing pin-on-disk wear tests using ceramic specimens with or without autoclave aging, the wear factor was almost the same between Ce-TZP/Al(2)O(3) samples with and without aging (6.74 +/- 0.36 x 10(-8) and 6.04 +/- 0.95 x 10(-8) mm(3)/Nm, respectively). In contrast, although non-aged Y-TZP had the lowest wear factor (4.88 +/- 0.51 x 10(-8) mm(3)/Nm) of all specimens tested, aged Y-TZP showed 10-fold greater wear than nonaged Y-TZP. The present study suggests that Ce-TZP/Al(2)O(3) nanocomposite has much greater phase stability than Y-TZP, and that its wear properties are not influenced by aging.  相似文献   

3.
Mechanical properties and slow crack growth (SCG) behavior of a 10Ce-TZP/Al2O3 nanocomposite currently developed as a biomaterial are considered. Fracture toughness is determined for sharp, long (double torsion) and short (indentation) cracks and a good agreement is found between the two types of cracks. The main toughening mechanism in the nanocomposite is the tetragonal to monoclinic phase transformation of the ceria-stabilized zirconia (Ce-TZP) phase. Transformation at the surface of ground specimens leads to surface compressive induced stresses and an increase in strength. Crack velocity curves (V-K(I) curves) are obtained under static and cyclic fatigue using the double torsion method. The static V-K(I) curve in air reveals the three stages characteristic of stress corrosion with a threshold K(I0) approximately 4.5 MPa m(1/2) and a fracture toughness of 8.8 MPa m(1/2) significantly higher than those of currently used inert bioceramics (i.e., alumina and Y-TZP). A crack growth accelerating effect is shown under cyclic loading, correlated with a decrease in the threshold. However, the cyclic fatigue threshold (4 MPa m(1/2)) still stands above that of current biomedical grade alumina and zirconia.  相似文献   

4.
Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement   总被引:1,自引:0,他引:1  
The objectives of this study were to investigate the biocompatibility, phase stability, and wear properties of a newly developed Ce-TZP/Al(2)O(3) nanocomposite, as compared to conventional ceramics, and to determine whether the new composite could be used as a bearing material in total joint prostheses. In tests of mechanical properties, this composite showed significantly higher toughness than conventional Y-TZP. For biocompatibility tests, cylindrical specimens of both the Ce-TZP/Al(2)O(3) nanocomposite and monolithic alumina were implanted into the paraspinal muscles of male Wistar rats. The tissue reactions were almost the same, and at 24 weeks after implantation, thin fibrous capsules with almost no inflammation were observed around both of them. There were no significant differences in membrane thickness between the two ceramics. After hydrothermal treatment in 121 degrees C vapor for 18 h, the new composite showed complete resistance to aging degradation, whereas Y-TZP showed a phase transformation of 25.3 vol% (initial 0.4%) to the monoclinic form. According to the results of pin-on-disk tests, the wear rates of Ce-TZP/Al(2)O(3) nanocomposite and alumina were 0.55 +/- 0.04 x 10(-7) and 2.12 +/- 0.37 x 10(-7)mm(3)/Nm, respectively. The results of this study suggest that the Ce-TZP/Al(2)O(3) nanocomposite is a promising alternative ceramic component for total joint replacement.  相似文献   

5.
Among bioceramics, zirconia (ZrO(2)) and alumina (Al(2)O(3)) possess exceptional mechanical properties suitable for load-bearing and wear-resistant applications but the poor bioactivity of these materials is the major concern when bonding and integration to the living bone are desired. This article investigates two different approaches and their underlying mechanisms to improve the bioactivity of zirconia (3Y-TZP) and a zirconia composite with alumina (10Ce-TZP/Al(2)O(3)). Chemical treatment approach applied on 3Y-TZP where the substrates were soaked in 5M H(3)PO(4) to create chemically functional groups on the surface for inducing apatite nucleation. X-ray photoelectron spectroscopy (XPS) was used to detect chemical changes and X-ray diffraction (XRD) to monitor phase changes on the surface before and after acid treatment. Alternate soaking approach applied on 10Ce-TZP/Al(2)O(3) consisted of soaking the composite substrates in CaCl(2) and Na(2)HPO(4) solutions alternately to make a precursor for apatite formation. The bioactivity was evaluated by apatite-forming ability of surface-treated materials in simulated body fluid (SBF). Both methods resulted in the formation of hydroxyapatite on the surface of materials; however, alternate soaking approach showed to be a simpler, faster, and more effective method than the chemical treatment approach for enhancing the bioactivity of zirconia materials.  相似文献   

6.
All-ceramic dental restorations exhibit enhanced esthetics and biocompatibility as compared to traditional metal-based prosthesis. However, long-term fatigue and subcritical crack growth in the presence of water and cyclic loading can decrease the strength of ceramic components over time. We investigated the cyclic fatigue in water of three dental materials currently used as frameworks in all-ceramic restorations: a 3 mol%-yttria partially stabilized zirconia (3Y-TZP, Cercon, Degudent GmbH), a Al(2)O(3)-ZrO(2)-Glass composite (Inceram-Zirconia, Vita Zahnfabrik GmbH) and a Li(2)O.2SiO(2) glass ceramic (Empress 2, Ivoclar Vivadent AG). Fatigue and fast fracture tests were performed to determine the Weibull distribution of lifetime and initial mechanical strength for each framework component. In spite of its noticeable susceptibility to fatigue in water, the 3Y-TZP material was found to be particularly suitable for the preparation of posterior all-ceramic bridges due to its high initial mechanical strength. Guidelines are provided for the selection of materials and the design of all-ceramic posterior bridges exhibiting lifetime longer than 20 years under severe wet and cyclic loading conditions.  相似文献   

7.
Strength and reliability of surface treated Y-TZP dental ceramics   总被引:5,自引:0,他引:5  
This work was undertaken to evaluate the effects of dental grinding and sandblasting on the biaxial flexural strength and Weibull modulus of various Y-TZP ceramics containing 3 mol% yttria. In addition, the susceptibility of pristine and mechanically treated materials to low-temperature degradation under the conditions adopted for testing the chemical solubility of dental ceramics was investigated. The results revealed that surface grinding and sandblasting exhibit a counteracting effect on the strength of Y-TZP ceramics. Dental grinding lowered the mean strength and Weibull modulus, whereas sandblasting provided a powerful method for strengthening, but at the expense of somewhat lower reliability. The finest-grained material exhibited the highest strength after sintering, but it was less damage tolerant than tougher, coarse-grained materials. Upon extraction with the acetic acid solution and the ammonia solution, a significant amount of tetragonal zirconia had transformed to monoclinic, but extensive microcracking and attendant strength degradation had not yet occurred. Standard grade Y-TZP ceramics are more resistant in an alkaline than in an acidic environment, and there was a strong grain-size dependence of the diffusion-controlled transformation. Since a special Y-TZP grade containing a small amount of alumina exhibited the highest damage tolerance and superior stability in an acidic environment, this material shows considerable promise for dental applications.  相似文献   

8.
Low temperature degradation and mechanical and thermal cycling may decrease the strength of zirconia and jeopardize the long-term success of dental restorations made of this material. The objective of this study was to reveal the influence of different environmental and loading conditions on the strength of 3 mol.% yttria-stabilized polycrystalline tetragonal zirconia (3Y-TZP). A total of 144 disk specimens were produced from each of two 3Y-TZP materials, and subjected to one of the following conditions: (A) no further treatment (control); (B and C) 106 and 5 × 106 mechanical cycles, respectively, with an upper load limit of 100 N; (D) 104 thermal cycles between 5 and 55 °C; (E) 200 days storage in water at 36 °C; (F) a successive combination of conditions B, D and E; (G) storage in water at 80 °C for 64 days; (H) storage in an autoclave at 134 °C for 8 h. Monoclinic phase content was evaluated by X-ray diffraction (XRD) analysis. Specimen strength was determined in a biaxial bending test. The two ceramics exhibited average strengths of 995 and 1239 MPa, respectively. No statistically significant influence of any treatment on strength was demonstrated for either material. However, XRD measurements revealed a substantial increase in monoclinic phase content, from an initial 2% (control) to up to 10%, according to storage conditions. As a consequence of hydrothermal loading a tetragonal to monoclinic phase transformation took place at the surface of the 3Y-TZP materials investigated, but, like thermal and mechanical cycling, this did not lead to significant changes in bulk strength.  相似文献   

9.
Guo H  Khor KA  Boey YC  Miao X 《Biomaterials》2003,24(4):667-675
Hydroxyapatite (HA) ceramics have been conventionally strengthened and toughened in the form of composites and coatings. New microstructural designs and processing methodologies are still needed for the improvement of the mechanical properties of HA-based ceramics. This study was to prepare laminated and functionally graded HA/yttria stabilized tetragonal zirconia (Y-TZP) composites by the relatively new process of spark plasma sintering (SPS). The microstructure and the mechanical properties of the laminated and functionally graded composites were studied for possible orthopedic applications. It was found that the laminated and functionally graded HA/Y-TZP composites could be densified at 1200 degrees C within 5 min by the SPS process and the average HA grain size in the composite layers was reduced by half due to the well-dispersed Y-TZP second phase. The HA phase in the composite layers was stable up to 1200 degrees C and the Y-TZP second phase remained the tetragonal zirconia (t-ZrO(2)) phase after being processed at the highest temperature of 1250 degrees C. The laminated and functionally graded HA/Y-TZP composites exhibited much improved mechanical properties compared with the pure HA ceramics; the bending strength of the composites reached about 200 MPa, double the strength of the pure HA ceramics.  相似文献   

10.
The purpose of this study was to investigate the effect of cerium and bismuth coloring salts solutions on the microstructure, color, flexural strength, and aging resistance of tetragonal zirconia for dental applications (3Y-TZP). Cylindrical blanks were sectioned into disks (2-mm thick, 25-mm in diameter) and colored by immersion in cerium acetate (CA), cerium chloride (CC), or bismuth chloride (BC) solutions at 1, 5, or 10 wt %. The density, elastic constants, and biaxial flexural strength were determined after sintering at 1350 degrees C. The crystalline phases were analyzed by X-ray diffraction before and after aging in autoclave for 10 h. The results showed that the mean density of the colored groups was comparable with that of the control group (6.072 +/- 0.008 g/cm(3)). XRD confirmed the presence of tetragonal zirconia with a slight increase in lattice parameters for the colored groups. A perceptible color difference was obtained for all groups (DeltaE* = 2.57 +/- 0.48 to 14.22 +/- 0.98), compared with the control. The mean grain size increased significantly for the groups colored with CC or CA at 10 wt %, compared with the control group (0.318 +/- 0.029 mm). The mean biaxial strength of CA1%, CA5%, and BC1% groups was not significantly different from that of the control group (1087.5 +/- 173.3 MPa). The flexural strength of all other groups decreased linearly with increasing concentration for both cerium salts (860.7 +/- 172 to 274.4 +/- 67.3 MPa). The resistance to low temperature degradation was not affected by the coloring process. Coloring with cerium or bismuth salts produced perceptible color differences even at the lowest concentrations. A decrease in flexural strength at the higher concentrations was attributed to an increase in open porosity.  相似文献   

11.
The purpose of this study was to evaluate microstructural and crystallographic phase changes after grinding 3Y-TZP dental ceramics. Ceramic blanks were sintered according to manufacturer's recommendations and divided into four groups: (A) as-sintered control, (B) diamond-ground manually under water, (C) ground and polished, and (D) ground and annealed at 1000 degrees C for 1 h. Bulk specimens were analyzed by X-ray diffraction to characterize the crystalline phases. The microstructure was investigated by SEM. XRD analyses showed that the control group and the group that was ground and annealed contained only tetragonal zirconia. However, after grinding or after grinding followed by polishing, rhombohedral zirconia and strained tetragonal zirconia were present, without any detectable amount of monoclinic zirconia. Annealing led to the disappearance of both residual lattice strain and the rhombohedral phase. The microstructure of the ground and polished specimens was characterized by significant residual surface damage associated with grain pullout to a depth of about 20 microm. This type of damage could have an impact on the long-term fatigue behavior of 3Y-TZP.  相似文献   

12.
Guazzato M  Proos K  Quach L  Swain MV 《Biomaterials》2004,25(20):5045-5052
The aim of this study was to investigate the biaxial flexural strength, reliability and the mode of fracture of bilayered porcelain/zirconia (Y-TZP) disks. For this purpose, 80 specimens were made from conventional dental porcelain and Y-TZP core ceramic, and equally divided into four groups as follows: monolithic specimens of porcelain; monolithic specimens of core material; bilayered specimens with the porcelain on top (facing the loading piston during testing); bilayered specimens with core material on top. The maximum load at fracture was calculated with a biaxial flexural test and finite element analysis was used to estimate the maximum tensile stress at fracture. Results were analyzed with one-way ANOVA, Tukey HSD. The reliability of strength was analyzed with the Weibull distribution. SEM was used to identify the initial crack and characterize the fracture mode. Monolithic core specimens and bilayered sample with the core material on the bottom were statistically significantly stronger than monolithic porcelain disks and bilayered samples with the porcelain on the bottom. The study, which was conducted with sample configurations that reproduce the clinical situation of crowns and fixed partial dentures, indicates that the material which lies on the bottom surface dictates the strength, reliability and fracture mode of the specimens. The contribution of strong and tough core materials to the performance of all-ceramics restorations may be offset by the weaker veneering porcelain if the actual distribution of the tensile stresses within the restoration is not taken into consideration.  相似文献   

13.
Hydroxyapatite (HA) has excellent biological behavior, and its composition and crystal structure are similar to the apatite in the human dental structure and skeletal system; a number of researchers have attempted to evaluate the effect of the addition of HA powders to restorative dental materials. In this study, nanohydroxy and fluoroapatite were synthesized using an ethanol based sol-gel technique. The synthesized nanoceramic particles were incorporated into commercial glass ionomer powder (Fuji II GC) and were characterized using Fourier transform infrared and Raman spectroscopy, X-ray diffraction and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass ionomer cements were evaluated. The effect of nanohydroxyapatite and fluoroapatite on the bond strength of glass ionomer cement to dentin was also investigated. Results showed that after 1 and 7 days of setting, the nanohydroxyapatite/fluoroapatite added cements exhibited higher compressive strength (177-179MPa), higher diametral tensile strength (19-20MPa) and higher biaxial flexural strength (26-28MPa) as compared with the control group (160MPa in CS, 14MPa in DTS and 18MPa in biaxial flexural strength). The experimental cements also exhibited higher bond strength to dentin after 7 and 30 days of storage in distilled water. It was concluded that glass ionomer cements containing nanobioceramics are promising restorative dental materials with both improved mechanical properties and improved bond strength to dentin.  相似文献   

14.
Induction of an apatite-forming ability on a nano-composite of a ceria-stabilized tetragonal zirconia polycrystals (Ce-TZP) and alumina (Al2O3) polycrystals via chemical treatment with aqueous solutions of H3PO4, H2SO4, HCl, or NaOH has been investigated. The Ce-TZP/Al2O3 composite is attractive as a load-bearing bone substitute because of its mechanical properties. The chemical treatments produced Zr-OH surface functional groups, which are known to be effective for apatite nucleation in a body environment. The composite, after chemical treatment, was shown to form a bonelike apatite layer when immersed in a simulated body fluid containing ion concentrations nearly equal to those in human blood plasma. This implies that it may form apatite in the living body and bond to living bone through the apatite layer. This type of bioactive Ce-TZP/Al2O3 composite is therefore expected to be useful as a bone substitute, even under load-bearing conditions.  相似文献   

15.
目的探索陶瓷自由成形制备全瓷牙种植体的工艺,并研究烧结温度对氧化锆陶瓷主要性能的影响。方法采用固相含量为55vol%的氧化锆陶瓷浆料,通过自由成形的方法制备试样,并用无压烧结方法在1 100℃、1 200℃、1 300℃和1 400℃下烧结试样,保温2 h,随炉冷却。对烧结试样的致密化程度、抗弯强度、微观形貌及相组成进行测试。结果试样最大收缩率为16.83%,致密度可达98.36%;1 300℃试样3点抗弯强度达到480 MPa;1 400℃试样X射线衍射检测出单斜相氧化锆的衍射峰,抗弯强度有所下降。结论陶瓷自由成形技术在牙科修复体制造领域具有广阔的发展前景,1 300℃烧结温度下试样综合性能最优,为最佳烧结温度。  相似文献   

16.
《Acta biomaterialia》2014,10(8):3756-3761
Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations.  相似文献   

17.
A plastic deformation process was demonstrated to self-join 3 mol.% yttria partially stabilized zirconia (3Y-TZP)/hydroxyapatite (HA) composites. The 3Y-TZP/40 vol.% HA composites were fabricated by conventional ceramic processing by cold pressing premixed 3Y-TZP and HA powders into pellets. Densification (≈90%) of composites was achieved by sintering composite powder compacts at 1450 °C for 5 h. Optimum self-joining of 3Y-TZP/40 vol.% HA composites was obtained at 1300 °C for a strain rate of 5 × 10−5/s. The flow stress during joining was 40 MPa. Microstructural and mechanical characterizations of the joint interface demonstrated that there were no discernible differences between the joint and the composite material away from the interface.  相似文献   

18.
文题释义:氧化钇稳定四方相氧化锆多晶陶瓷:是以氧化钇为稳定剂、四方相为主要物相的氧化锆陶瓷,其具有较高的抗弯强度(900-1 200 MPa)和断裂韧性(9-10 MPa·m1/2)。由于这些优异的机械性能,氧化钇稳定四方相氧化锆多晶陶瓷成为口腔冠桥修复中应用最广泛的陶瓷之一。 相变增韧机制:为氧化锆增韧的一种方法。稳定剂使四方相氧化锆在室温下可以处于亚稳态,但是在应力作用下亚稳态的四方相氧化锆易转化为单斜相氧化锆,同时伴有3%-5%的体积膨胀,这个过程能弥合微裂纹且消耗断裂能,提高氧化锆陶瓷的韧性。 背景:任何表面处理都应在不损害原有氧化钇稳定四方相氧化锆多晶陶瓷强度的前提下提高其粘接强度。目前缺乏上釉技术对氧化钇稳定四方相氧化锆多晶陶瓷粘接强度影响的资料,并且其对氧化钇稳定四方相氧化锆多晶陶瓷力学性能的影响尚不明确。 目的:评估上釉技术对氧化钇稳定四方相氧化锆多晶陶瓷力学行为及其与树脂水门汀粘接强度的影响。 方法:制作氧化钇稳定四方相氧化锆多晶陶瓷试件并随机分为4组:A组,表面不做任何处理;B组,110 μm氧化铝颗粒喷砂;C组,上釉+氢氟酸酸蚀;D组,上釉+氢氟酸酸蚀+硅烷化。检测每组试件的表面显微形貌、粗糙度、晶相结构、元素组成、剪切粘接强度和弯曲强度,并观察剪切粘接强度测试后所有断面的断裂模式。 结果与结论:①经表面处理后的试件粗糙度明显增大,降序排列依次为C组(0.62±0.01) μm、D组(0.55±0.02) μm、B组(0.11±0.02) μm、A组(0.05±0.01) μm,5组间粗糙度比较差异有显著性意义(P < 0.05);②B组试件表面含有2.2%单斜相氧化锆,而其他组含量均为零;③除锆和氧2种元素外,B组还含有铝元素6.49%,C和D组分别含有硅元素18.67%和25.78%;④A、B、C、D组的剪切粘接强度分别为(3.11±0.40),(4.23±0.45),(6.62±0.60),(10.46±0.83) MPa,组间两两比较差异均有显著性意义(P < 0.05);⑤A、B、C和D组的三点弯曲强度分别为(961.07±75.53),(1 234.73±114.09),(1 024.28±120.51),(1 036.09±80.10) MPa,其中A、C和D组两两比较差异无显著性意义(P > 0.05),B组与A、C、D组比较差异有显著性意义(P < 0.05);⑥结果表明,上釉技术未明显提升氧化钇稳定四方相氧化锆多晶陶瓷的弯曲强度,但上釉后经氢氟酸蚀刻并硅烷化处理可显著增强氧化钇稳定四方相氧化锆多晶陶瓷与树脂水门汀之间的粘接强度。 ORCID: 0000-0002-8066-2498(徐小敏) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

19.
All-ceramic restorations are known to be prone to brittle fracture. However, a previously performed in vitro study indicates that four-unit fixed partial dentures (FPDs) with a zirconia framework are sufficiently strong to withstand occlusal forces in the posterior region. The aim of this study was to determine the stress distribution in such a four-unit FPD made of yttria-stabilized polycrystalline tetragonal zirconia (Y-TZP), under an occlusal load. A three-dimensional finite element model was constructed and a stress analysis performed with a force of 1630 N applied at the centre of the middle connector area. The location of maximum tensile stress according to finite element analysis coincided with the fracture origin of all 10 specimens fractured within the previous in vitro study. The maximum tensile stress in the area of the middle connector amounted to 633 MPa. It increased with the load being applied from the oral towards the buccal side (648 MPa) and decreased with the load being applied from the buccal towards the oral side (570 MPa). These stresses are of the same order as the flexural strength of Y-TZP, determined under standardized test conditions to be 600–1000 MPa. The model presented is intended to be used for further investigations, including thermally induced stresses during veneering.  相似文献   

20.
The objective of this work is to demonstrate how the stiffness, hardness, as well as the biocompatibility property, of bioinert high-density polyethylene (HDPE) can be significantly improved by the combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different volume fractions of hydroxyapatite and alumina, limited to a total of 40 vol %, have been incorporated in HDPE matrix. All the hybrid composites and monolithic HDPE were developed under optimized hot pressing condition (130 degrees C, 0.5 h, 92 MPa pressure). The results of the mechanical property characterization reveal that higher elastic modulus (6.2 GPa) and improved hardness (226.5 MPa) could be obtained in the developed HDPE-20 vol %-HAp-20 vol % Al(2)O(3) composite. Under the selected fretting conditions against various counterbody materials (steel, Al(2)O(3), and ZrO(2)), an extremely low COF of (0.07-0.11) and higher wear resistance (order of 10(-6) mm(3)/Nm) are obtained with the HDPE/20 vol % HAp/20 vol % Al(2)O(3) composite in both air and simulated body fluid environment. Importantly, in-vitro cell culture study using L929 fibroblast cells confirms favorable cell adhesion properties in the developed hybrid composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号